
MERL: Multi-Head Reinforcement Learning
Framework for Task-Agnostic Auxiliary Tasks

Yannis Flet-Berliac and Philippe Preux

SequeL Inria, University of Lille
CRIStAL, CNRS

Abstract

A common challenge in reinforcement learning is how to convert the agent’s inter-
actions with an environment into fast and robust learning. For instance, earlier work
makes use of domain knowledge to improve existing reinforcement learning algo-
rithms in complex tasks. While promising, previously acquired knowledge is often
costly and challenging to scale up. Instead, we decide to consider problem knowl-
edge with signals from quantities relevant to solve any task, e.g., self-performance
assessment and accurate expectations. Vex is such a quantity. It is the fraction
of variance explained by the value function V and measures the discrepancy be-
tween V and the returns. Taking advantage of Vex, we propose MERL, a general
framework for structuring reinforcement learning by injecting problem knowledge
into policy gradient updates. As a result, the agent is not only optimized for a
reward but learns using problem-focused quantities provided by MERL, applicable
out-of-the-box to any task. In this paper: (a) We introduce and define MERL, the
multi-head reinforcement learning framework we use throughout this work. (b)
We conduct experiments across a variety of standard benchmark environments,
including 9 continuous control tasks, where results show improved performance.
(c) We demonstrate that MERL also improves transfer learning on a set of challeng-
ing pixel-based tasks. (d) We ponder how MERL tackles the problem of reward
sparsity and better conditions the feature space of reinforcement learning agents.

1 Introduction

The problem of learning how to act optimally in an unknown dynamic environment has been a source
of many research efforts for decades (Nguyen & Widrow, 1990; Werbos, 1989; Schmidhuber &
Huber, 1991) and is still at the forefront of recent work in deep Reinforcement Learning (RL) (Burda
et al., 2019; Ha & Schmidhuber, 2018; Silver et al., 2016; Espeholt et al., 2018). Nevertheless, current
algorithms tend to be fragile and opaque (Iyer et al., 2018): they require a large amount of training
data collected from an agent interacting with a simulated environment where the reward signal is
often critically sparse. Collecting signals that will make the agent more efficient is, therefore, at the
core of the algorithms designers’ concerns.

Previous work in RL uses prior knowledge (Lin, 1992; Clouse & Utgoff, 1992; Ribeiro, 1998;
Moreno et al., 2004) to reduce sample inefficiency. While promising and unquestionably necessary,
the integration of such priors into current methods is likely costly to implement, it may cause
undesired constraints and can hinder scaling up. Therefore, we propose a framework to directly
integrate non-limiting constraints in current RL algorithms while being applicable to any task. In
addition to an increased efficiency, the agent should learn from all interactions, not just the rewards.
Indeed, if the probability of receiving a reward by chance is arbitrarily low, then the time required

Accepted at the Workshop on Deep Reinforcement Learning at the 33rd Conference on Neural Information
Processing Systems (NeurIPS 2019), Vancouver, Canada.

to learn from it will be arbitrarily long (Whitehead, 1991). This barrier to learning will prevent
agents from significantly reducing learning time. One way to overcome this barrier is to learn
complementary and task-agnostic signals of self-performance assessment and accurate expectations
from different sources (Schmidhuber, 1991; Oudeyer & Kaplan, 2007), whatever the task to master.

Shared	
parameters	
network

Head	1 Head	2 Head	n

Problem	
knowledge	
constraint

V(θ) π(θ)

Input

Problem	
knowledge	
constraint

MERL	Agent

Environment

Ac(ons

Quan=ty	1 Quan=ty	nQuan=ty	2

Rewards

States

Shared	
parameters	
network

Head	1 Head	2 Head	n

Problem	
knowledge	
constraint

V(θ) π(θ)

Input

Problem	
knowledge	
constraint

Figure 1: High-level overview of the Multi-hEad
Reinforcement Learning (MERL) framework.

From the above considerations and building on
existing auxiliary task methods, we design a
framework that integrates problem knowledge
quantities into the learning process. In addition
to providing a method technically applicable to
any policy gradient method or environment, the
central idea of MERL is to incorporate a mea-
sure of the discrepancy between the estimated
state value and the observed returns as an aux-
iliary task. This discrepancy is formalized with
the notion of the fraction of variance explained
Vex (Kvålseth, 1985). One intuition the reader
can have is that MERL transforms a reward-
focused task into a task regularized with dense
problem knowledge signals.

Fig. 1 provides a preliminary understanding of
MERL assets: an enriched actor-critic archi-
tecture with a lightly modified learning algo-
rithm places the agent amidst task-agnostic aux-
iliary quantities directly sampled from the en-
vironment. In the sequel of this paper, we use
two problem knowledge quantities to demon-
strate the performance of MERL: Vex, a com-
pelling measure of self-performance, and future
states prediction, commonly used in auxiliary
task methods. The reader is further encouraged
to introduce many other relevant signals. We
demonstrate that while being able to predict the
quantities from the different MERL heads correctly, the agent outperforms the on-policy baseline
that does not use the MERL framework on various continuous control tasks. We also show that,
interestingly, our framework allows to better transfer the learning, from one task to another, on several
Atari 2600 games.

2 Preliminaries

We consider a Markov Decision Process (MDP) with states s ∈ S, actions a ∈ A, transition
distribution st+1 ∼ P (st, at) and reward function r(s, a). Let π = {π(a|s), s ∈ S, a ∈ A} denote a
stochastic policy and let the objective function be the traditional expected discounted reward:

J(π) , E
τ∼π

[∞∑
t=0

γtr (st, at)

]
, (1)

where γ ∈ [0, 1) is a discount factor (Puterman, 1994) and τ = (s0, a0, s1, . . .) is a trajectory
sampled from the environment. Policy gradient methods aim at modelling and optimizing the policy
directly (Williams, 1992). The policy π is generally implemented with a function parameterized
by θ. In the sequel, we will use θ to denote the parameters as well as the policy. In deep RL, the
policy is represented in a neural network called the policy network and is assumed to be continuously
differentiable with respect to its parameters θ.

2.1 Fraction of Variance Explained: Vex

The fraction of variance that the value function explains about the returns corresponds to the proportion
of the variance in the dependent variable V that is predictable from the independent variable st. We

2

define Vexτ as the fraction of variance explained for a trajectory τ :

Vexτ , 1−

∑
t∈τ

(
R̂t − V (st)

)2
∑
t∈τ

(
R̂t −R

)2 , (2)

where R̂t and V (st) are respectively the return and the expected return from state st ∈ τ , and R
is the mean of all returns in trajectory τ . In statistics, this quantity is also known as the coeffi-
cient of determination R2 and it should be noted that this criterion may be negative for non-linear
models (Kvålseth, 1985), indicating a severe lack of fit of the corresponding function:

• Vexτ = 1: V perfectly explains the returns - V and the returns are correlated;
• Vexτ = 0 corresponds to a simple average prediction - V and the returns are not correlated;
• Vexτ < 0: V provides a worse fit to the outcomes than the mean of the returns.

One can have the intuition that Vexτ close to 1 implies that the trajectory τ provides valuable signals
because they correspond to transitions sampled from an exercised behavior. On the other hand,
Vexτ close to 0 indicates that the value function is not correlated with the returns, therefore, the
corresponding samples are not expected to provide as valuable information as before. Finally,
Vexτ < 0 corresponds to a high mean-squared error for the value function, which means for the
related trajectory that the agent still has to learn to perform better. In Flet-Berliac & Preux (2019),
policy gradient methods are improved by using Vex as a criterion to dropout transitions before each
policy update. We will show that Vex is also a relevant indicator for assessing self-performance in
the context of MERL agents.

2.2 Policy Gradient Method: PPO with Clipped Surrogate Objective

In this paper, we consider on-policy learning primarily for its unbiasedness and stability compared to
off-policy methods (Nachum et al., 2017). On-policy is also empirically known as being less sample
efficient than off-policy learning hence this issue emerged as an interesting research topic. However,
our method can be applied to off-policy methods as well, and we leave this investigation open for
future work.

PPO (Schulman et al., 2017) is among the most commonly used and state-of-the-art on-policy policy
gradient methods. Indeed, PPO has been tested on a set of benchmark tasks and has proven to produce
impressive results in many cases despite a relatively simple implementation. For instance, instead of
imposing a hard constraint like TRPO (Schulman et al., 2015), PPO formalizes the constraint as a
penalty in the objective function. In PPO, at each iteration, the new policy θnew is obtained from the
old policy θold:

θnew ← argmax
θ

E
st,at∼πθold

[
LPPO (st, at, θold, θ)

]
. (3)

We use the clipped version of PPO whose objective function is:

LPPO(st, at, θold, θ) = min

(
πθ(at|st)
πθold(at|st)

Aπθold (st, at), g(ε, A
πθold (st, at))

)
, (4)

where

g(ε, A) =

{
(1 + ε)A,A ≥ 0
(1− ε)A,A < 0.

(5)

A is the advantage function, A(s, a) , Q(s, a)− V (s). The expected advantage function Aπθold is
estimated by an old policy and then re-calibrated using the probability ratio between the new and
the old policy. In Eq. 4, this ratio is constrained to stay within a small interval around 1, making the
training updates more stable.

2.3 Related Work

Auxiliary tasks have been adopted to facilitate representation learning for decades (Suddarth &
Kergosien, 1990; Klyubin et al., 2005), along with intrinsic motivation (Schmidhuber, 2010; Pathak

3

et al., 2017) and artificial curiosity (Schmidhuber, 1991; Oudeyer & Kaplan, 2007). The use of
auxiliary tasks to allow the agents to maximize other pseudo-reward functions simultaneously has
been studied in a number of previous work (Shelhamer et al., 2016; Dosovitskiy & Koltun, 2016;
Burda et al., 2018; Du et al., 2018; Riedmiller et al., 2018; Kartal et al., 2019), including incorporating
unsupervised control tasks and reward predictions in the UNREAL framework (Jaderberg et al., 2016),
applying auxiliary tasks to navigation problems (Mirowski et al., 2016), or for utilizing representation
learning (Lesort et al., 2018) in the context of model-based RL. Lastly, in imitation learning of
sequences provided by experts, Li et al. (2016) introduces a supervised loss for fitting a recurrent
model on the hidden representations to predict the next observed state.

Our method incorporates two key contributions: a multi-head layer with auxiliary task signals both
environment-agnostic and technically applicable to any policy gradient method, and the use of
Vexτ as an auxiliary task to measure the discrepancy between the value function and the returns in
order to allow for better self-performance assessment and eventually more efficient learning. In
addition, MERL differs from previous approaches in that its framework simultaneously addresses
the advantages mentioned hereafter: (a) neither the introduction of new neural networks (e.g., for
memory) nor the introduction of a replay buffer or an off-policy setting is needed, (b) all relevant
quantities are compatible with any task and is not limited to pixel-based environments, (c) no
additional iterations are required, and no modification to the reward function of the policy gradient
algorithms it is applied to is necessitated. The above reasons make MERL generally applicable and
technically suitable out-of-the-box to most policy gradient algorithms with a negligible computational
cost overhead.

From a different perspective, Garcıa & Fernández (2015) gives a detailed overview of previous work
that has changed the optimality criterion as a safety factor. But most methods use a hard constraint
rather than a penalty; one reason is that it is difficult to choose a single coefficient for this penalty
that works well for different problems. We are successfully addressing this problem with MERL.
In Lipton et al. (2016), catastrophic actions are avoided by training an intrinsic fear model to predict
whether a disaster will occur and using it to shape rewards. Compared to both methods, MERL
is more scalable and lightweight while it successfully incorporates quantities of self-performance
assessments (e.g., variance explained of the value function) and accurate expectations (e.g., next state
prediction) leading to an improved performance.

3 Multi-Head Framework for Reinforcement Learning using Vex

Our multi-head architecture and its associated learning algorithm are directly applicable to most
state-of-the-art policy gradient methods. Let h be the index of each MERL head: MERLh. We
propose two of the quantities predicted by these heads and show how to incorporate them into PPO.

3.1 Policy and Value Function Representation

In deep RL, the policy is generally represented in a neural network called the policy network, with
parameters θ, and the value function is parameterized by the value network, with parameters φ.
Each MERL head MERLh takes as input the last embedding layer from the value network and is
constituted of only one layer of fully-connected neurons, with parameters φh. The output size of each
head corresponds to the size of the predicted MERL quantity. Below, we elaborate on two.

3.2 Vex Estimation

In order to have an estimate of the fraction of variance explained, we write MERLVE as the
corresponding MERL head with parameters φVE. Its objective function is defined by:

LMERLVE

(τ, φ, φVE) = ‖MERLVE(τ)− Vexτ ‖22. (6)

3.3 Future States Estimation

Auxiliary task methods based on next state prediction are, to the best of our knowledge, the most
commonly used in the RL literature. We include such auxiliary task into MERL, in order to assimilate
our contribution to the previous work and to provide a enriched evaluation of the proposed framework.

4

At each timestep, one of the agent’s MERL heads predicts a future state s′ from s. While a typical
MERL quantity can be fit by regression on mean-squared error, we observed that predictions of future
states are better fitted with a cosine-distance error. We denote MERLFS the corresponding head, with
parameters φFS, and S the observation space size (size of vector s). We define its objective function
as:

LMERLFS

(s, φ, φFS) = 1−
∑S
i=1 MERLFS

i (s) · s′i√∑S
i=1(MERLFS

i (s))2
√∑S

i=1(s
′
i)

2

. (7)

3.4 Problem-Constrained Policy Update

Once a set of MERL heads MERLh and their associated objective functions LMERLh have been
defined, we modify the gradient update step of the policy gradient algorithms. The objective function
incorporates all LMERLh . Of course, each MERL objective is associated with its coefficient ch. It
is worthy to note that we used the exact same MERL coefficients for all our experiments, which
demonstrate the framework’s ease of applicability. Algorithm 1 illustrates how the learning is
achieved. In Eq. 9, only the (boxed) MERL objectives parameterized by φ are added to the value
update and modify the learning algorithm.

Algorithm 1 PPO+MERL update.

Initialise policy parameters θ0
Initialise value function and MERLh functions parameters φ0

for k = 0,1,2,... do
Collect set of trajectories Dk = {τi} with horizon T by running policy πθk in the environment
Compute MERLh estimates at timestep t from sampling the environment
Compute advantage estimates At at timestep t based on the current value function Vφk
Compute future rewards R̂t from timestep t

Gradient Update

θk+1 = argmax
θ

∑
τ∈Dk

T∑
t=0

min

(
πθ (at|st)
πθk (at|st)

Aπθk (st, at) , g (ε, A
πθk (st, at))

)
(8)

φk+1 = argmin
φ

∑
τ∈Dk

T∑
t=0

(
Vφk (st)− R̂t

)2
+

H∑
h=0

chL
MERLh (9)

4 MERL applied to Continuous Control Tasks and the Atari domain

4.1 Methodology

We evaluate MERL in multiple high-dimensional environments, ranging from MuJoCo (Todorov
et al., 2012) to the Atari 2600 games (Bellemare et al., 2013). The experiments in MuJoCo allow us
to evaluate the performance of MERL on a large number of different continuous control problems. It
is worthy to note that the universal characteristics of the auxiliary quantities we design ensure that
MERL is directly applicable to any task. Other popular auxiliary task methods (Jaderberg et al., 2016;
Mirowski et al., 2016; Burda et al., 2018) are not out-of-the-box applicable to continuous control
tasks like MuJoCo. Thus, we naturally compare the performance of our method with PPO (Schulman
et al., 2017) where MERL heads are not used. Later, we also experiment with MERL on the Atari
2600 games to study the transfer learning abilities of our method on a set of diverse tasks.

Implementation. For the continuous control MuJoCo tasks, the agents have learned using separated
policy and value networks. In this case, we build upon the value network to incorporate our
framework’s heads. On the contrary, when playing Atari 2600 games from pixels, the agents were

5

given a CNN network (Krizhevsky et al., 2012) shared between the policy and the value function.
In that case, MERLh are naturally attached to the last embedding layer of the shared network. In
both configurations, the outputs of MERLh heads are the same size as the quantity they predict: for
instance, MERLVE is a scalar whereas MERLFS is a state.

Hyper-parameters Setting. We used the same hyper-parameters as in the main text of the corre-
sponding paper. We made this choice within a clear and objective protocol of demonstrating the
benefits of using MERL. Hence, its reported performance is not necessarily the best that can be
obtained, but it still exceeds the baseline. Using MERL adds as many hyper-parameters as there are
heads in the multi-head layer and it is worth noting that MERL hyper-parameters are the same for all
tasks. We report all hyper-parameters in Tables 1 and 2.

Table 1: Hyper-parameters used in PPO+MERL
Hyper-parameter Value
Horizon (T) 2048 (MuJoCo), 128 (Atari)
Adam stepsize 3 · 10−4 (MuJoCo), 2.5 · 10−4 (Atari)
Nb. epochs 10 (MuJoCo), 3 (Atari)
Minibatch size 64 (MuJoCo), 32 (Atari)
Number of actors 1 (MuJoCo), 4 (Atari)
Discount (γ) 0.99
GAE parameter (λ) 0.95
Clipping parameter (ε) 0.2 (MuJoCo), 0.1 (Atari)
Value function coef 0.5

Table 2: MERL hyper-parameters
Hyper-parameter Value
MERLVE coef cVE 0.5
MERLFS coef cFS 0.01

Performance Measures. We examine the performance across a large number of trials (with different
seeds for each task). Standard deviation of returns, and average return are generally considered to be
the most stable measures used to compare the performance of the algorithms being studied (Islam
et al., 2017). Thereby, in the rest of this work, we use those metrics to establish the performance of
our framework quantitatively.

4.2 Single-Task Learning: Continuous Control

We apply MERL to PPO in several continuous control tasks, where using auxiliary tasks has not
been explored in detail in the literature. Specifically, we use 9 MuJoCo environments. Due to space
constraints, only 3 graphs from varied tasks are shown in Fig. 2. The complete set of 9 tasks is
reported in Table 3.

Table 3: Average total reward of the last 100 episodes over 7 runs on the 9 MuJoCo environments.
Boldface mean± std indicate statistically better performance.

Task PPO Ours
Ant 1728± 64 2157± 212
HalfCheetah 1557± 21 2117± 370
Hopper 2263± 125 2105± 200
Humanoid 577± 10 603± 8
InvertedDoublePendulum 5965± 108 6604± 130
InvertedPendulum 474± 14 497± 12
Reacher −7.84± 0.7 −7.78± 0.8
Swimmer 93.2± 8.7 124.6± 5.6
Walker2d 2309± 332 2347± 353

6

The results demonstrate that using MERL leads to better performance on a variety of continuous
control tasks. Moreover, learning seems to be faster for some tasks, suggesting that MERL takes
advantage of its heads to learn relevant quantities from the beginning of learning, when the reward
signals may be sparse. Interestingly, by looking at the performance across all 9 tasks, we observed
better results by predicting only the next state and not the subsequent ones.

0 200000 400000 600000 800000 1000000

0

500

1000

1500

2000

2500
Ant

PPO+MERL
PPO

0 200000 400000 600000 800000 1000000

500

0

500

1000

1500

2000

2500

HalfCheetah
PPO+MERL
PPO

0 200000 400000 600000 800000 1000000
20

40

60

80

100

120

Swimmer
PPO+MERL
PPO

Figure 2: Experiments on 3 MuJoCo environments (106 timesteps, 7 seeds) with PPO+MERL. Red
is the baseline, blue is with our method. The line is the average performance, while the shaded area
represents its standard deviation.

4.3 Transfer Learning: Atari Domain

Because of training time constraints, we consider a transfer learning setting where, after the first 106
training steps, the agent switches to a new task for another 106 steps. The agent is not aware of the
task switch. Atari 2600 has been a challenging testbed for many years due to its high-dimensional
video input (210 x 160) and the discrepancy of tasks between games. To investigate the advantages
of MERL in transfer learning, we choose a set of 6 Atari games with an action space of 9, which is
the average size of the action space in the Atari domain. This experimental choice is beneficial in that
the 6 games provide a diverse range of game-play while sticking to the same size of action space.

0 200000 400000 600000 800000 1000000

400

500

600

700

800

Enduro MsPacman
Enduro+PPO+MERL
Enduro+PPO
PPO

0 200000 400000 600000 800000 1000000
300

400

500

600

700

800

900

BeamRider MsPacman
BeamRider+PPO+MERL
BeamRider+PPO
PPO

0 200000 400000 600000 800000 1000000
300

400

500

600

700

800

900
CrazyClimber MsPacman

CrazyClimber+PPO+MERL
CrazyClimber+PPO
PPO

0 200000 400000 600000 800000 1000000
300

400

500

600

700

800

VideoPinball MsPacman
VideoPinball+PPO+MERL
VideoPinball+PPO
PPO

0 200000 400000 600000 800000 1000000

400

600

800

1000

1200
Asterix MsPacman

Asterix+PPO+MERL
Asterix+PPO
PPO

Figure 3: Transfer learning tasks from 5 Atari games to Ms. Pacman (2 × 106 timesteps, 4 seeds).
Performance on the second task. Orange is PPO solely trained on Ms. Pacman, red and blue are
respectively PPO and our method transferring the learning. The line is the average performance,
while the shaded area represents its standard deviation.

Fig. 3 demonstrates that our method can better adapt to different tasks. This can suggest that MERL
heads learn and help represent information that is more generally relevant for other tasks, such as
self-performance assessment or accurate expectations. In addition to adding a regularization term to
the objective function with problem knowledge signals, those auxiliary quantities make the neural
network optimize for task-agnostic sub-objectives.

4.4 Ablation Study

We conduct an ablation study to evaluate the separate and combined contributions of the two heads.
Fig. 4 shows the comparative results in HalfCheetah, Walker2d, and Swimmer. Interestingly, with

7

0 200000 400000 600000 800000 1000000

500

0

500

1000

1500

2000

2500

HalfCheetah
PPO+MERL
PPO+FS
PPO
PPO+VE

0 200000 400000 600000 800000 1000000
0

500

1000

1500

2000

2500

3000

3500

Walker2d
PPO+MERL
PPO+FS
PPO
PPO+VE

0 200000 400000 600000 800000 1000000
20

40

60

80

100

120

Swimmer
PPO+MERL
PPO+FS
PPO
PPO+VE

Figure 4: Ablation experiments with only one MERL head (FS or VE) (106 timesteps, 4 seeds). Blue
is MERL with the two heads, red with the FS head, green with the VE head and orange with no
MERL head. The line is the average performance, the shaded area represents its standard deviation.

HalfCheetah, using only the MERLVE head degrades the performance, but when it is combined with
the MERLFS head, it outperforms PPO+FS. Results of the complete ablation analysis demonstrate
that each head is potentially valuable for enhancing learning and that their combination can produce
remarkable results. In addition, it may be intuited that finding a variety of complementary MERL
heads to cover the scope of the problem in a holistic perspective can significantly improve learning.

4.5 Discussion

The experiments suggest that MERL successfully optimizes the policy according to complementary
quantities seeking for good performance and safe realization of tasks, i.e. it does not only maximize
a reward but instead ensures the control problem is appropriately addressed. Moreover, we show
that MERL is directly applicable to policy gradient methods while adding a negligible computation
cost. Indeed, for the MuJoCo and Atari tasks, the computational cost overhead is respectively 5% and
7% with our training infrastructure. All of these factors result in a generally applicable algorithm
that more robustly solves difficult problems in a variety of environments with continuous action
spaces or by using only raw pixels for observations. Thanks to a consistent choice of complementary
quantities injected in the optimization process, MERL is able to better align an agent’s objectives
with higher-level insights into how to solve a control problem. Besides, since many current methods
involve that successful learning depends on the agent’s chance to reach the goal by chance in the first
place, correctly predicting MERL heads gives the agent an opportunity to learn from useful signals
while improving in a given task.

5 Conclusion

In this paper, we introduced Vex, a new auxiliary task, to measure the discrepancy between the
value function and the returns, which successfully assesses the agent’s performance and helps learn
more efficiently. We also proposed MERL, a generally applicable deep RL framework for learning
problem-focused representations, which we demonstrated the effectiveness with a combination of
two auxiliary tasks. We established that injecting problem knowledge signals directly in the policy
gradient optimization allows for a better state representation that is generalizable to many tasks. Vex
provides a more problem-focused state representation to the agent, which is, therefore, not only
reward-centric. MERL can be labeled as being a hybrid model-free and model-based framework,
formed with lightweight embedded models of self-performance assessment and accurate expectations.
MERL heads introduce a regularization term to the function approximation while addressing the
problem of reward sparsity through auxiliary task learning. Those features nourish a framework
technically applicable to any policy gradient algorithm or environment; it does not need to be
redesigned for different problems and can be extended with other relevant problem-solving quantities,
comparable to Vex.

Although the relevance and higher performance of MERL have only been shown empirically, we think
it would be interesting to study the theoretical contribution of this framework from the perspective of
an implicit regularization of the agent’s representation on the environment. We also believe that the
identification of additional MERL quantities (e.g., prediction of time until the end of a trajectory) and
the effect of their combination is also a research topic that we find most relevant for future work.

8

References
Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-

ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019.

Jeffery A Clouse and Paul E Utgoff. A teaching method for reinforcement learning. In Machine
Learning, pp. 92–101. Elsevier, 1992.

Alexey Dosovitskiy and Vladlen Koltun. Learning to act by predicting the future. In International
Conference on Learning Representations, 2016.

Yunshu Du, Wojciech M Czarnecki, Siddhant M Jayakumar, Razvan Pascanu, and Balaji Lakshmi-
narayanan. Adapting auxiliary losses using gradient similarity. arXiv preprint arXiv:1812.02224,
2018.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In International Conference on Machine Learning,
pp. 1406–1415, 2018.

Yannis Flet-Berliac and Philippe Preux. Samples are useful? not always: denoising policy gradient
updates using variance explained. arXiv preprint arXiv:1904.04025, 2019.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution, 2018.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of bench-
marked deep reinforcement learning tasks for continuous control. arXiv preprint arXiv:1708.04133,
2017.

Rahul Iyer, Yuezhang Li, Huao Li, Michael Lewis, R Sundar, and Katia P Sycara. Transparency
and explanation in deep reinforcement learning neural networks. In Proceedings of AAAI/ACM
Conference on Artificial Intelligence, Ethics, and Society. AAAI/ACM, 2018.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Bilal Kartal, Pablo Hernandez-Leal, and Matthew E Taylor. Terminal prediction as an auxiliary task
for deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 15, pp. 38–44, 2019.

AS Klyubin, D Polani, and CL Nehaniv. Empowerment: a universal agent-centric measure of control.
In Proceedings of the 2005 IEEE Congress on Evolutionary Computation 1 pp. 128-, 2005.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Tarald O Kvålseth. Cautionary Note about R2. The American Statistician, 39(4):279–285, 1985.

Timothée Lesort, Natalia Díaz-Rodríguez, Jean-Franois Goudou, and David Filliat. State representa-
tion learning for control: An overview. Neural Networks, 108:379–392, 2018.

Xiujun Li, Lihong Li, Jianfeng Gao, Xiaodong He, Jianshu Chen, Li Deng, and Ji He. Recurrent rein-
forcement learning: a hybrid approach. In International Conference on Learning Representations,
2016.

9

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3-4):293–321, 1992.

Zachary C Lipton, Kamyar Azizzadenesheli, Abhishek Kumar, Lihong Li, Jianfeng Gao, and
Li Deng. Combating reinforcement learning’s sisyphean curse with intrinsic fear. arXiv preprint
arXiv:1611.01211, 2016.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, Andrea Banino,
Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. Learning to navigate in
complex environments. arXiv preprint arXiv:1611.03673, 2016.

David L Moreno, Carlos V Regueiro, Roberto Iglesias, and Senén Barro. Using prior knowledge to
improve reinforcement learning in mobile robotics. In Proceedings Towards Autonomous Robotics
Systems, 2004.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 2775–2785, 2017.

Derrick Nguyen and Bernard Widrow. The truck backer-upper: An example of self-learning in neural
networks. In Advanced Neural Computers, pp. 11–19, 1990.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computational
approaches. Frontiers in Neurorobotics, 1:6, 2007.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994. ISBN 0471619779.

Carlos HC Ribeiro. Embedding a priori knowledge in reinforcement learning. Journal of Intelligent
and Robotic Systems, 21(1):51–71, 1998.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele,
Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse
reward tasks from scratch. In International Conference on Machine Learning, pp. 4341–4350,
2018.

J Schmidhuber and R Huber. Learning to generate artificial fovea trajectories for target detection.
International Journal of Neural Systems, 2(1/2):135–141, 1991.

Jürgen Schmidhuber. Curious model-building control systems. In IEEE International Joint Confer-
ence on Neural Networks, pp. 1458–1463. IEEE, 1991.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1928–1937, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is its own reward: Self-
supervision for reinforcement learning. In International Conference on Learning Representations,
2016.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529:484, 2016.

S Suddarth and Y Kergosien. Rule-injection hints as a means of improving network performance and
learning time. Neural Networks, pp. 120–129, 1990.

10

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Paul J Werbos. Neural networks for control and system identification. In IEEE Conference on
Decision and Control,, pp. 260–265, 1989.

S.D. Whitehead. Complexity and cooperation in q-learning. In Eighth International Workshop on
Machine Learning, pp. 363–367, 1991.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

11

	Introduction
	Preliminaries
	Fraction of Variance Explained: Vex
	Policy Gradient Method: PPO with Clipped Surrogate Objective
	Related Work

	Multi-Head Framework for Reinforcement Learning using Vex
	Policy and Value Function Representation
	Vex Estimation
	Future States Estimation
	Problem-Constrained Policy Update

	MERL applied to Continuous Control Tasks and the Atari domain
	Methodology
	Single-Task Learning: Continuous Control
	Transfer Learning: Atari Domain
	Ablation Study
	Discussion

	Conclusion

