Data-Efficient Pipeline for Offline Reinforcement
Learning with Limited Data

Allen Nie* Yannis Flet-Berliac Deon R. Jordan
William Steenbergen Emma Brunskill

Department of Computer Science
Stanford University
*anie@stanford.edu

Abstract

Offline reinforcement learning (RL) can be used to improve future performance by
leveraging historical data. There exist many different algorithms for offline RL, and
it is well recognized that these algorithms, and their hyperparameter settings, can
lead to decision policies with substantially differing performance. This prompts
the need for pipelines that allow practitioners to systematically perform algorithm-
hyperparameter selection for their setting. Critically, in most real-world settings,
this pipeline must only involve the use of historical data. Inspired by statistical
model selection methods for supervised learning, we introduce a task- and method-
agnostic pipeline for automatically training, comparing, selecting, and deploying
the best policy when the provided dataset is limited in size. In particular, our
work highlights the importance of performing multiple data splits to produce more
reliable algorithm-hyperparameter selection. While this is a common approach
in supervised learning, to our knowledge, this has not been discussed in detail
in the offline RL setting. We show it can have substantial impacts when the
dataset is small. Compared to alternate approaches, our proposed pipeline outputs
higher-performing deployed policies from a broad range of offline policy learning
algorithms and across various simulation domains in healthcare, education, and
robotics. This work contributes toward the development of a general-purpose
meta-algorithm for automatic algorithm-hyperparameter selection for offline RL.

1 Introduction

Offline/batch reinforcement learning has the potential to learn better decision policies from existing
real-world datasets on sequences of decisions made and their outcomes. In many of these settings,
tuning methods online is infeasible and deploying a new policy involves time, effort and potential
negative impact. Many of the existing datasets for applications that may benefit from offline RL may
be fairly small in comparison to supervised machine learning. For instance, the MIMIC intensive care
unit dataset on sepsis that is often studied in offline RL has 14k patients (Komorowski et al., 2018),
the number of students frequently interacting with an online course will often range from hundreds to
tens of thousands (Bassen et al., 2020), and the number of demonstrations collected from a human
operator manipulating a robotic arm is often on the order of a few hundred per task (Mandlekar
et al., 2018). In these small data regimes, recent studies (Mandlekar et al., 2021; Levine et al.,
2020) highlight that with limited data, the selection of hyperparameters using the training set is often
challenging. Yet hyperparameter selection also has a substantial influence on the resulting policy’s
performance, particularly when when the algorithm leverages deep neural networks.

One popular approach to address this is to learn policies from particular algorithm-hyperparameter
pairs on a training set and then use offline policy selection, which selects the best policy given a
validation set (Thomas et al., 2015a, 2019; Paine et al., 2020; Kumar et al., 2021). However, when

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Non-Markov Data Compare Considers Considers
Common Practices Env Efficient Across Evaluation Training
(re-train) OPL Variation Variation

Policy selection (1 split)

Internal Objective / TD-Error

(Thomas et al., 2015b, 2019) (depends) X X X X
OPE methods
(Komorowski et al. (2018);

Paine et al. (2020) (depends) X v X X
OPE + BCa Val.

(Thomas et al.,, 2015b) (depends) X v v X
BVET

(Xie and Jiang, 2021) X X X X X
BVET + OPE

(Zhang and Jiang, 2021) X X v v X

Q-Function Workflow X v X X X

(Kumar et al., 2021)

Ours: A; selection (multi-split)

Cross-Validation v v v v v
Repeated Randpm % %
Subsampling

Table 1: A summary of commonly used approaches for choosing a deployment policy from a fixed
offline RL dataset. We define Data Efficient as: the approach assumes the algorithm can be re-trained
on all data points; (depends) as: depends on whether the underlying OPL or OPE methods make
explicit Markov assumption or not.

the dataset is limited in size, this approach can be limited: (a) if the validation set happens to have
no or very few good/high-reward trajectories, then trained policies cannot be properly evaluated;
(b) if the training set has no or very few such trajectories, then no good policy behavior can be
learned through any policy learning algorithm; and (c) using one fixed training dataset is prone to
overfitting the hyperparameters on this one dataset and different hyperparameters could be picked
if the training set changes. One natural solution to this problem is to train on the entire dataset and
compare policy performance on the same dataset, which is often referred to as the internal objective
approach. In Appendix A.1 we conduct a short experiment using D4RL where this approach fails due
to the common issue of Q-value over-estimation (Fujimoto et al., 2019).

There has been much recent interest in providing more robust methods for offline RL. Many rely on
the workflow just discussed, where methods are trained on one dataset and Offline Policy Evaluation
(OPE) is used to do policy selection (Su et al., 2020; Paine et al., 2020; Zhang and Jiang, 2021; Kumar
et al., 2021; Lee et al., 2021; Tang and Wiens, 2021; Miyaguchi, 2022). Our work highlights the
impact of a less studied issue: the challenge caused by data partitioning variance. We first motivate
the need to account for train/validation partition randomness by showing the wide distribution of OPE
scores the same policy can obtain with different subsets of data or the very different performance
results the same algorithm and hyperparameters can have depending on the training set partition.
We also prove a single partition can have a notable failure rate in identifying the best algorithm-
hyperparameter.

We then introduce a general pipeline for algorithm-hyperparameters (AH) selection and policy de-
ployment that: (a) uses repeated random sub-sampling (RRS) with replacement of the dataset to
perform AH training, (b) uses OPE on the validation set, (c) computes aggregate statistics over the
RRS splits to inform AH selection, and (d) allows to use the selected AH to retrain on the entire dataset
to obtain the deployment policy. Though such repeated splitting is common in supervised learning, its
impact and effect have been little studied in the offline RL framework. Perhaps surprisingly, we show
that our simple pipeline leads to substantial performance improvements in a wide range of popular
benchmark tasks, including DARL (Fu et al., 2020) and Robomimic (Mandlekar et al., 2021).

2 Related work

Offline Policy Learning (OPL). In OPL, the goal is to use historical data from a fixed behavior
policy 7, to learn a reward-maximizing policy in an unknown environment (Markov Decision Process,
defined in Section 3). Most work studying the sampling complexity and efficiency of offline RL (Xie
and Jiang, 2021; Yin et al., 2021) do not depend on the structure of a particular problem, but empirical
performance may vary with some pathological models that are not necessarily Markovian. Shi et al.
(2020) have precisely developed a model selection procedure for testing the Markovian hypothesis
and help explain different performance on different models and MDPs. To address this problem, it is
inherently important to have a fully adaptive characterization in RL because it could save considerable
time in designing domain-specific RL solutions (Zanette and Brunskill, 2019). As an answer to a
variety of problems, OPL is rich with many different methods ranging from policy gradient (Liu et al.,
2019), model-based (Yu et al., 2020; Kidambi et al., 2020), to model-free methods (Siegel et al., 2020;
Fujimoto et al., 2019; Guo et al., 2020; Kumar et al., 2020) each based on different assumptions on
the system dynamics. Practitioners thus dispose of an array of algorithms and corresponding hyperpa-
rameters with no clear consensus on a generally applicable evaluation tool for offline policy selection.

Offline Policy Evaluation (OPE). OPE is concerned with evaluating a target policy’s performance
using only pre-collected historical data generated by other (behavior) policies (Voloshin et al., 2021).
Each of the many OPE estimators has its unique properties, and in this work, we primarily consider
two main variants (Voloshin et al., 2021): Weighted Importance Sampling (WIS) (Precup, 2000) and
Fitted Q-Evaluation (FQE) (Le et al., 2019). Both WIS and FQE are sensitive to the partitioning
of the evaluation dataset. WIS is undefined on trajectories where the target policy does not overlap
with the behavior policy and self-normalizes with respect to other trajectories in the dataset. FQE
learns a Q-function using the evaluation dataset. This makes these estimators very different from
mean-squared errors or accuracy in the supervised learning setting — the choice of partitioning will
first affect the function approximation in the estimator and then cascade down to the scores they
produce.

Offline Policy Selection (OPS). Typically, OPS is approached via OPE, which estimates the expected
return of candidate policies. Zhang and Jiang (2021) address how to improve policy selection in
the offline RL setting. The algorithm builds on the Batch Value-Function Tournament (BVFT) (Xie
and Jiang, 2021) approach to estimating the best value function among a set of candidates using
piece-wise linear value function approximations and selecting the policy with the smallest projected
Bellman error in that space. Previous work on estimator selection for the design of OPE methods
include Su et al. (2020); Miyaguchi (2022) while Kumar et al. (2021); Lee et al. (2021); Tang and
Wiens (2021); Paine et al. (2020) focus on offline hyperparameter tuning. Kumar et al. (2021) give
recommendations on when to stop training a model to avoid overfitting. The approach is exclusively
designed for Q-learning methods with direct access to the internal Q-functions. On the contrary,
our pipeline does policy training, selection, and deployment on any offline RL method, not reliant
on the Markov assumption, and can select the best policy with potentially no access to the internal
approximation functions (black box). We give a brief overview of some OPS approaches in Table 1.

3 Background and Problem Setting

We define a stochastic Decision Process M = (S, A, T, r,~), where S is a set of states; A is a set
of actions; 7' is the transition dynamics (which might depend on the full history); r is the reward
function; and v € (0, 1) is the discount factor. Let 7 = {s;, a;, s}, 7; } £, be the trajectory sampled
from 7 on M. The optimal policy 7 is the one that maximizes the expected discounted return
V(m) = Ernp, [G(7)] where G(7) = 3,2 7' and py is the distribution of 7 under policy 7. For
simplicity, in this paper we assume policies are Markov 7 : S — A, but it is straightforward to
consider policies that are a function of the full history. In an offline RL problem, we take a dataset:
D = {r;}}_,, which can be collected by one or a group of policies which we refer to as the behavior
policy 7, on the decision process M. The goal in offline/batch RL is to learn a decision policy 7 from
a class of policies with the best expected performance V'™ for future use. Let A; to denote an AH pair,
i.e. an offline policy learning algorithm and its hyperparameters and model architecture. An offline
policy estimator takes in a policy 7. and a dataset D, and returns an estimate of its performance:

V . 1II x D — R. In this work, we focus on two popular Offline Policy Evaluation (OPE) estimators:
Importance Sampling (IS) (Precup, 2000) and Fitted Q-Evaluation (FQE) (Le et al., 2019) estimators.
We refer the reader to Voloshin et al. (2021) for a more comprehensive discussion.

True Rewar;:_ﬂsl.:’;ﬁ @ P-MDP AH-63 H . . ‘ : l4+
True Rewardpig%PA P-MDP AH-49 .

True Rewardes 18 ?—EEH MBS-QI AH-23

True Rewarde-4 62 = MBS-Ql AH-13 e[t

True Reward:-gk,al% “ED"‘T BC AH-8 %

BC
True Reward=-13.26 } } -+ BC AH-4 %

-30 -20 -10 0 10 20 30 40 50 =20 -15 -10 -5 0

Policy

OPE Estimates on 10 Partitions True Reward of Policy trained on 10 Partitions
(a) (b)

Figure 1: True performance and evaluation of 6 A; pairs on the Sepsis-POMDP (N=1000) domain. (a)
shows the OPE estimations and (b) shows the variation in terms of true performance. The variations
are due to the different AH pairs of the policies but also to the sensitivity to the training/validation splits.

4 The Challenge of Offline RL A; Selection

An interesting use-case of offline RL is when domain experts have access to an existing dataset
(with potentially only a few hundred trajectories) about sequences of decisions made and respective
outcomes, with the hope of leveraging the dataset to learn a better decision policy for future use.
In this setting, the user may want to consider many options regarding the type of RL algorithm
(model-based, model-free, or direct policy search), hyperparameter, or deep network architecture to
use.

Automated algorithm selection is important because different A4; (different AH pairs) may learn
very diverse policies, each with significantly different performance V. Naturally, one can expect
that various algorithms lead to diverse performance, but using a case-study experiment on a sepsis
simulator (Oberst and Sontag, 2019), we observe in Figure 1(b) that the sensitivity to hyperparameter
selection is also substantial (cf. different average values in box plots for each method). For example,
MBS-QI (Liu et al., 2020) learns policies ranging from over -12 to -3 in their performance, depending
on the hyperparameters chosen.

Precisely, to address hyperparameter tuning, past work often relies on executing the learned policies
in the simulator/real environment. When this is not feasible, as in many real-world applications,
including our sepsis dataset example, where the user may only be able to leverage existing historical
data, we have no choice but to rely on off-policy evaluation. Prior work (Thomas et al., 2015b;
Farajtabar et al., 2018; Thomas et al., 2019; Mandlekar et al., 2021) have suggested doing so using a
hold-out method, after partitioning the dataset into training and validation sets.

Unfortunately, the partitioning of the dataset itself may result in substantial variability in the training
process (Dietterich, 1998). We note that this problem is particularly prominent in offline RL where
high-reward trajectories are sparse and affect both policy learning and policy evaluation. To explore
this hypothesis, we consider the influence of the train/validation partition in the same sepsis domain,
and we evaluate the trained policies using the Weighted Importance Sampling (WIS) (Precup, 2000)
estimator. Figure 1(a) shows the policies have drastically different OPE estimations with sensitivity
to randomness in the dataset partitioning. We can observe the same phenomena in Figure 1(b) with
largely different true performances depending on the dataset splitting for most of the policies .A;. This
is also illustrated on the left sub-figure of Figure 4 where in the case where a single train-validation
split is used, an A; that yields lower-performing policies will often be selected over those that yield
higher-performing policies when deployed.

4.1 Repeated Experiments for Robust Hyperparameter Evaluation in Offline RL

We now demonstrate why it is important to conduct repeated random sub-sampling on the dataset in
offline RL. Consider a finite set of .J offline RL algorithms .A. Let the policy produced by algorithm
A; on training dataset D be 7, its estimated performance on a validation set V7, and its true
(unknown) value be V™. Denote the true best resulting policy as m;« = argmax; V'™ and the
corresponding algorithm 4. Let the best policy picked based on its validation set performance as
Tj. = argmax; V7 and the corresponding algorithm AJA»*.

Theorem 1. There exist stochastic decision processes and datasets such that (i) using a single
train/validation split procedure that selects an algorithm-hyperparameter with the best performance

on the validation dataset will select a suboptimal policy and algorithm with significant finite prob-
ability, P(ﬂ'j* # mj+) > C, with corresponding substantial loss in performance O(Vinaz), and, in
contrast, (ii) selecting the algorithm-hyperparameter with the best average validation performance
across Ny train/validation splits will select the optimal algorithm and policy with probability 1:
imp, o0 P(m5. =7+) — 1.

Proof Sketch. Due to space constraints we defer the proof to Appendix A.3. Briefly, the proof
proceeds by proof by example through constructing a chain-like stochastic decision process and
considers a class of algorithms that optimize over differing horizons (see e.g. Jiang et al. (2015);
Cheng et al. (2021); Mazoure et al. (2021)). The behavior policy is uniformly random meaning
that trajectories with high rewards are sparse. This means there is a notable probability that in a
single partition of the dataset, the resulting train and/or validation set may not contain a high reward
trajectory, making it impossible to identify that a full horizon algorithm, and resulting policy, is
optimal.

In the proof and our experiments, we focus on when the training and validation sets are of equal
size. If we use an uneven split, such as 80/20%, the failure probability can further increase if only a
single partition of the dataset is used. We provide an illustrative example in the Appendix. Note that
Leave-one-out Cross-Validation (LooCV) will also fail in our setting if we employ, as we do in our
algorithm, WIS, because as a biased estimator, WIS will return the observed return of the behavior
policy if averaging over a single trajectory, independent of the target policy to be evaluated. We
explain this further in Appendix A.11.

5 SSR: Repeated Random Sampling for A; Selection and Deployment

In this paper, we are interested in the following problem: If offline RL training and evaluation are
very sensitive to the partitioning of the dataset, especially in small data regimes, how can we reliably
produce a final policy that we are confident is better than others and can be reliably deployed in
the real-world?

Instead of considering the sensitivity to data partition as an inherent obstacle for offline policy
selection, we view this as statistics to leverage for .A; selection. We propose a general pipeline: Split
Select Retrain (SSR) (of which we provide a pseudo-code in Algorithm 1, Appendix A.4) to reliably
optimize for a good deployed policy given only: an offline dataset, an input set of AH pairs and an
off-policy evaluation (OPE) estimator. This deployment approach leverages the random variations
created by dataset partitioning to select algorithms that perform better on average using a robust
hyperparameter evaluation approach which we develop below.

First, we split and create different partitions of the input dataset. For each train/validation split,
each algorithm-hyperparameter (AH) is trained on the training set and evaluated using the input
OPE method to yield an estimated value on the validation set. These estimated evaluations are then
averaged, and the best AH pair (A*) is selected as the one with the highest average score. Now the
last step of the SSR pipeline is to re-use the entire dataset to train one policy 7* using .A*.

Repeated Random Sub-sampling (RRS). As Theorem 1 suggests, one should ensure a sufficient
amount of trajectories in the evaluation partition to lower the failure rate C. We propose to create RRS
train-validation partitions. This approach has many names in the statistical model selection literature,
such as Predictive Sample Reuse Method (Geisser, 1975), Repeated Learning-Test Method (Burman,
1989) or Monte-Carlo Cross-Validation (Dubitzky et al., 2007). It has also been referred to as
Repeated Data Splitting (Chernozhukov et al., 2018) in the heterogeneous treatment effect literature.
We randomly select trajectories in D and put them into into two parts: ~ RU3in
and RValid, We repeat this splitting process K times to generate paired datasets:
(Rirain pyalid) (pirain - pyalidy " (Rirain " pyalid) “We compute the generalization performance
estimate as follows:

1

Gans, = 7 D [VIARE™); R m
k

M=

1

A key advantage of overlap partitioning is that it maintains the size of the validation dataset as K
increases. This might be favorable since OPE estimates are highly dependent on the state-action
coverage of the validation dataset — the more data in the validation dataset, the better OPE estimators
can evaluate a policy’s performance. As K — oo, RRS approaches the leave-p-out cross-validation

(CV), where p denotes the number of examples in the validation dataset. Since there are (Z) possible

selections of p data points out of n in our dataset, it is infeasible to use exact leave-p-out CV when
p > 2, but a finite K can still offer many advantages. Indeed, Krzanowski and Hand (1997) point
out that leave-p-out estimators will have lower variance compared to leave-one-out estimators, which
is what the more commonly used M-fold cross-validation method converges to when M = n — 1.
We discuss more in Appendix A.2.

6 Experiments

In this section, we answer the following questions: (a) how does the pipeline SSR-RRS compare to
other methods? (b) does the proposed pipeline for .4; selection and policy deployment allow us to
generate the best policy trained on the whole dataset? (c) does re-training on the whole dataset (data
efficiency) generate better policies than policies trained on half of the dataset when A; is selected
by the pipeline? In addition, we conduct two ablation studies to answer to: what number of splits
should we use for SSR-RRS and what is the impact of dataset size on the pipeline results?

6.1 Task/Domains

The experimental evaluation involves a variety of real-world and simulated domains, ranging from
tabular settings to continuous control robotics environments. We evaluate the performance of SSR in
selecting the best algorithm regardless of task domains and assumptions on task structure. We conduct
experiments on eight datasets (Figure 2) from five domains (details in Appendix A.14), which we give
a short description below, and use as many as 540 candidate AH pairs for the Sepsis POMDP domain.

()

@ 5

Intravenous

Fluid Vasopressor

Figure 2: Illustrations from left to right of the D4RL, Robomimic, TutorBot and Sepsis domains.

Sepsis. The first domain is based on the simulator and work by Oberst and Sontag (2019) and revolves
around treating sepsis patients. The goal of the policy for this simulator is to discharge patients
from the hospital. In this domain, we experiment on two tasks: Sepsis-MDP and Sepsis-POMDP, a
POMDP version of Sepsis-MDP.

TutorBot. The second domain includes a TutorBot simulator that is designed to support 3-5th grade
elementary school children in understanding the concept of volume and engaging them while doing
so. An online study was conducted using policy-gradient-based RL agent which interacted with
about 200 students. We took the observations from this online study and built a simulator that reflects
student learning progression, combined with some domain knowledge.

Robomimic. Robomimic (Mandlekar et al., 2021) is composed of various continuous control
robotics environments with suboptimal human data. We use the Can-Paired and Transport dataset
composed of 200 mixed quality human demonstrations. Mandlekar et al. (2021) attempted to use the
RL objective loss on a 20% split validation set to select the best AH pair, but reported that the selected
AH did not perform well in the simulator, which makes this task an interesting testbed for our pipeline.

D4RL. D4RL (Fu et al., 2020) is an offline RL standardized benchmark designed and commonly used
to evaluate progress of offline RL algorithms. We use 3 datasets (200k samples each) with different
qualities from the Hopper task: hopper-random from a randomly initialized policy, hopper-medium
from a policy trained to approximately 1/3 the performance of a policy trained to completion with
SAC ("expert"), and hopper-medium-expert from a 50-50 split of medium and expert data.

6.2 Baselines

One-Split OPE. The simplest method to train and verify an algorithm’s performance without access
to any simulator is to split the data into a train Dy,,;, and valid set Dy,1iq. All policies are trained

) _ imi Robomimic
Sepsis-POMDP N=1000 Sepsis-POMDP Sepsis-MDp ~ Robomimic - EF0m M
ows o Ne1000 N=200 Can-Paired P
L 8 : N=200 N=200
5 6.57 ° o8
R Nested CV 5 03
E 0.5
-4 OPE + 4.30 -4 04
_5 4 Bootstrapped Val. C.ross L 6 o4
g f_"ﬁ Validation 2.20 2.40 % s 03
g 2 1.70 BVFTOK;;H ; . 03
5 0.36 ~E e o
E_J__ O - - 0.2
5 ! ! i, 01 01
E -2 =L il -16
4 <-3 <-3 50% 100% 50% 100% 0750 100% *% 0% 100%
T Qo &L 0o e
CHERNRY < O
FE R P AT AT P T R b
&’%Qé’@ TV CCLFE S P ®
o)

(a)

Figure 3: (a) We first compare our proposed pipeline to various other policy selection approaches in
the Sepsis POMDP task. Our approach SSR-RRS 5-split consistently obtains policies that on average
perform close to the optimal policy, significantly outperforming other approaches. (b) We investigate
the importance of re-training in the small (N=200) to medium (N=1000) data regime. We show the true
reward obtained by all policies from all AH pairs either trained on 50% of the data or 100% of the data.
95% confidence intervals are depicted as error bars. Most policies achieve higher rewards when trained
on more data, even more so when the dataset is small or when tasks are more difficult (Robomimic).

on the same training set and evaluated on the same valid set. As we explained before, this method has
the high potential of overfitting the chosen hyperparameter for one data partition — it might pick the
best policy, but does not guarantee we can use the same hyperparameter to re-train on the full dataset.

OPE on Bootstrapped Val. Bootstrapping is a popular re-sampling technique that estimates pre-
diction error in supervised learning models (Efron, 1983, 1986). The idea of using bootstrapping
for OPE estimate is first utilized in HCOPE (Thomas et al., 2015b). Compared to the one-split
method and the SSR pipeline, bootstrapping trains all policies on the same training dataset, and only
considers variations in the validation set by creating bootstrapped samples. We refer to the considered
Bias-corrected accelerated (BCa) bootstrap method as BCa in the experiments.

Cross-Validation (CV). One other natural alternative of repeated experiment validation is the popular
M-fold Cross-Validation method (Stone, 1974). M-fold CV constructs a non-overlapping set of
trajectories from the original dataset. For example, a 5-fold CV will train a policy on 80% of data
and evaluate the policy on 20% of data, as it divides the dataset into 5 non-overlapping partitions.
However, as we increase the number of splits M, which allows us to train/test our algorithms under
more data split variations, each non-overlapping set D,,, becomes smaller. When M = n — 1, M-fold
CV becomes leave-one-out CV (LooCV). In this extreme case, many OPE estimators will not work
properly, as we have shown in Appendix A.3. We further investigate a variant of M-fold CV called
Nested M-fold CV (Nested CV), which repeats the M-fold non-overlapping partitioning K times.
This procedure is computationally very expensive. Considering the fairness of comparison and
computational efficiency, we only evaluate K x 2-fold CV.

OPE with BVFT. Batch Value Function Tournament is the closest competitor to our method, which
is a meta-algorithm for hyperparameter-free policy selection (Xie and Jiang, 2021; Zhang and Jiang,
2021). For a set of Q-value functions, BVFT does pairwise comparisons of each (tournament-style)
to select the best out of the entire set based on the BVFT-Loss. Compared to our method, BVFT
incurs O(J?) comparison given .J AH pairs, practically infeasible for large .J. The original BVFT can
only compare Q-functions, therefore only usable with OPL that directly learns Q-functions. Zhang
and Jiang (2021) offers an extension to BVFT by using BVFT to compare between FQEs, therefore
allowing BVFT to be OPL-agnostic. We adopt the two strategies recommended by the paper. Given J
AH pairs and B FQEs, strategy 1 compares J x B FQE’s Q-functions jointly (7 x FQE) and strategy
2 compares B FQEs within each AH and pick the best FQE as the estimate of the AH’s value estimate
(m + FQE). We discuss more in Appendix A.6 (calculations) and A.7 (time complexity).

6.3 Training and Evaluation

Offline Policy Learning. In the following, we outline a variety of Offline RL algorithms used in the
evaluation of the SSR pipeline to demonstrate the generality of our approach and that it can reliably

Internal

I Algorithms .
Category gorithms Q-function
. . BC (Pomerleau, 1991)
Imitation Learning b ~pNN (Mandlekar et al., 2018) X
. BCQ (Fujimoto et al., 2019), CQL (Kumar et al., 2020),
Conservative Model-Free Q (Fuj). CQL () v
IRIS (Mandlekar et al., 2020)
Policy Gradient POIS (Metelli et al., 2018), BC+POIS (ours), BC+mini-POIS (ours) X
Offline Model-Based MOPO (Yu et al., 2020), P-MDP (ours) v
Table 2: List of AH we are comparing in our experiments.
One-Split OPE SSR RRS-2 SSR RRS-5
beminipg_exp_18- W ™} 100 10 #} NoDiff
bcminil exp 9- W L | | e T] *
Pg_exp_t +
bcq_exp_17 [| 80 }
0 *
bcq_exp_23- | - | | - n +
mbsqi_exp_29 60 g
mbsqi_exp_5 - -0 *
mbsqi_exp_71- - : f, e -} SSRRRS-5 (50% Data)
mbsqi_exp_80- | |] | 2 2 D“" M | SSRRRS-2(50% Data)
mdp_exp_18- Picked OPE with One Split (50% Data)
mdp,_exp_39 20 Policy 4 SSRRRS-5(100% Data)
-30 * SSR RRS-2 (100% Data)
mdp_exp_48- » OPE with One Split (100% Data)
T epietisuicisns mimegiatieatit memgmadieasy 0 el T
" True Performance *" " Jrue Performance """ rue Performance N=200 N=1000 N=5000

Low performing
policies

High performing
policies

(a) (b)

Figure 4: (a) We show the effect of choosing K (the number of train/valid splits) for SSR-RRS.
We ablate K and run the simulation 500 times. The heatmaps shows the frequency at which each
policy is chosen by our method and its final performance in the environment. In this experiment,
SSR-RRS chooses over 540 AH pairs. As we can see, when the number of splits K is larger, SSR-RRS
consistently pick better policies. (b) In the Sepsis-POMDP domain, we show that as the number of
trajectories (IV) in the offline dataset increases, data partitioning becomes less important. Though
RRS still outperforms the 1-split policy selection.

produce the optimal final policy using the selected AH pair. This marks a departure from workflows
designed for specific algorithms, such as Kumar et al. (2021). We experiment with popular offline RL
methods (see Table 2 and we provide algorithmic and hyperparameter details in Table A.2). Offline
Policy Evaluation. We use WIS estimators for the tabular and discrete action domains: Sepsis and
TutorBot. We use FQE for continuous action domains: Robomimic and D4RL. For each task, with a
given dataset, we use the splitting procedure described in Section 5 to generate the partitioning. We
describe how we compute the results for each figure in Appendix A.13.

7 Results

A; Selection Comparison. In Figure 3(a), we compare five approaches (One-Split OPE, BCa,
BVFT-FQE, CV, and SSR-RRS) on the Sepsis-POMDP domain with 1000 patients. For each approach,
we compute a score per AH pair, and select the best algorithm according to each. For fairness in
comparison, all selected .A; are re-trained on the full dataset and we report the final performance
in the real environment. As expected, One-Split OPE performed the worst. Surprisingly, using
the lower bound of bootstrapped (BCa (LB)) confidence interval also does not allow to pick good
policies, LB being perhaps too conservative. We see that CV 2-fold and CV 5-fold do not perform
well either. CV 2-fold does not allow enough repetition and CV 5-fold makes the validation set size
too small. We observe clearly that SSR-RRS 5-split performs the best and selected policies that are
on average very close to the optimal policy’s performance. BVFT-FQE relies on FQE, which is a
misspecified model on the Sepsis domain and difficult to optimize given the small dataset size, hence
it does not select good policies in Sepsis. However, in Robomimic Can-Paired and D4RL Hopper,
BVFT-FQE is able to pick good policies, albeit not significantly better or worse than other methods,
and still worse than SSR-RRS 5-split in the mixed (more realistic) “medium-expert” dataset. We show
more analysis of BVFT compared to our method in the Appendix. Table 3 aggregates the results
for all the considered domains in our study. Our approach SSR-RRS 5-split is distinctly able to more
consistently select policies that, once deployed, perform close to the optimal policy across all tasks.

Re-trained BVFT-FQE BVFT-FQE SSR SSR Optimal

onfull dataset ~7wxFQE 7+FQE V2 €V RRS2 RRS5 Policy

Robomimic:
Can-Paired 0.65 0.71 0.72 0.72 0.71 0.73 0.75
Transport 0.21 0.0 0.42 0.42 0.62 0.70 0.74
D4RL (Hopper):
random 321.75 317.72 325.37 325.37 324.92 325.37 325.37
medium 934.71 1227.81 1227.81 130453 1296.87 1304.54 1392.93
medium-expert 2677.93 2677.93 2530.04 2530.04 3481.34 3657.80 3657.80
Sepsis:

MDP (n=200) — -19.32 -10.26 -20.32 -13.01 -7.85 -1.94
POMDP (n=1000) — -1.92 0.74 -1.92 2.40 6.75 7.86
TutorBot:

POMDP (n=200) — — 1.34 1.19 1.30 1.38 1.43

Table 3: Comparison of the performance obtained by a policy deployed using the SSR pipeline vs.
using 1-split policy selection approaches on a wide range of application domains. Cells = average
true return. We note that (7 x FQE) is very computationally expensive when we search through a
large AH space (in Sepsis and TutorBot), therefore we exclude them.

The Benefits of Re-training Policies Selected with SSR. In Figure 3(b), we plot the true reward of
a selected policy A; when only trained on 50% of the dataset (the training set) compared to when
trained on 100% of the dataset. As expected, in the small data regime, every single trajectory matters.
Policies trained on the full dataset significantly outperform policies trained only on half of it. This
experiment provides strong evidence in favor of AH selection (done with RRS on the full dataset) over
policy selection (done on the training set) in offline RL.

The Impact of Number of Repeats for SSR-RRS. The proposed pipeline SSR-RRS has a hyperparam-
eter K for the number of repeated data splitting. In Figure 4(a), we show the true performance of the
policy that is being selected by SSR-RRS with K = 1, 2, 5 by running 500 simulations with heatmaps
on the frequency each policy is selected. We observe that when K = 1 (equivalent to the One-Split
OPE method), policies are picked quite uniformly; many of which are performing poorly. When
K =5, higher-performing policies are selected much more frequently. From Table 3, we conclude
that ' = 5 generally works well across various domains. Naturally, the number of split K will be
chosen in line with the computing budget available; K = 5 appears to be a reasonable choice.

The Impact of Dataset Size. Finally, we investigate to which extent the proposed pipeline is necessary
when the dataset size is sufficiently large. We use the Sepsis-POMDP domain with 200, 1000 and 5000
patients. We show the best policies that are most frequently selected by our approach in Figure 4(b).
Unsurprisingly, policies trained on larger datasets perform better. In the 200-patient dataset, having
SSR-RRS S-split is crucial in picking the best policy, as most policies perform quite poorly. The
gap between different approaches becomes smaller with 1000 patients, and even smaller when there
are 5000 patients in the dataset. However, it is worth noting that even in the large dataset regime
(N=5000), SSR-RRS still outperforms the One-Split OPE method in selecting the best algorithm.

Additional Analysis. Our method SSR-RRS can also be used to select hyperparameters for a single
algorithm, as we demonstrate in Appendix A.9. One might also wonder how sensitive is SSR-RRS
pipeline to the choice of OPE method used inside the pipeline. OPE methods are known to significantly
vary in accuracy for different domains, and unsurprizingly, using a reasonable OPE method for the
domain is important (see Appendix A.8). Note though the OPE estimators we use in our results are
very popular ones, and it is possible to use standard approaches, though additional benefits may come
from using even better OPE methods. Finally, related to this question, one might wonder if particular
OPE methods might be biased towards certain OPL algorithms which make similar assumptions
(such as assuming a Markov structure): interestingly in preliminary experiments, FQE estimators did
not seem to give FQI algorithms higher performance estimations (see Appendix A.10).

8 Discussion and Conclusion

We presented SSR, a pipeline for training, comparing, selecting and deploying offline RL policies in
a small data regime. The approach performs automated AH selection with a robust hyperparameter

evaluation process using repeated random sub-sampling. SSR allows to consistently and reliably
deploy best-performing policies thanks to jointly avoiding overfitting on a single dataset split and
being data efficient in re-using the whole dataset for final training. We prove that a single split has a
high failure rate of discovering the optimal AH because of reward sparsity. We have demonstrated its
strong empirical performance across multiple and various challenging domains, including real-world
applications where AH tuning cannot be performed online.

There exist many interesting areas for future work. The proposed offline RL pipeline assumes the
user/practitioner has selected a particular OPE method. OPE is an important subarea of its own
and different approaches have different bias/variance tradeoffs. Recent work on automated model
selection algorithms for OPE (Su et al., 2020; Lee et al., 2021) are a promising approach for producing
good internal estimators. A second issue is that while our approach aims to produce a high-performing
policy, it does not also produce an accurate estimate of this policy since the entire dataset is used at
the end for training. An interesting issue is whether cross-splitting (Chernozhukov et al., 2016) or
other methods could be used to compute reliable estimators as well as perform policy optimization.

9 Acknowledgment

Research reported in this paper was supported in part by a Hoffman-Yee grant, NSF grant #2112926
and the DEVCOM Army Research Laboratory under Cooperative Agreement W911NF-17-2-0196
(ARL IoBT CRA). The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied, of the
Army Research Laboratory or the U.S.Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation herein. We
would like to thank Jonathan N. Lee, Henry Zhu, Matthew Jorke, Tong Mu, Scott Fleming, and Eric
Zelikman for discussions.

References

Bassen, J., Balaji, B., Schaarschmidt, M., Thille, C., Painter, J., Zimmaro, D., Games, A., Fast, E.,
and Mitchell, J. C. (2020). Reinforcement learning for the adaptive scheduling of educational
activities. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,
pages 1-12.

Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold cross-validation and the
repeated learning-testing methods. Biometrika, 76(3):503-514.

Cheng, C.-A., Kolobov, A., and Swaminathan, A. (2021). Heuristic-guided reinforcement learning.
Advances in Neural Information Processing Systems, 34.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and Robins, J.
(2016). Double/debiased machine learning for treatment and causal parameters. arXiv preprint
arXiv:1608.00060.

Chernozhukov, V., Demirer, M., Duflo, E., and Fernandez-Val, 1. (2018). Generic machine learning
inference on heterogeneous treatment effects in randomized experiments, with an application to
immunization in india. Technical report, National Bureau of Economic Research.

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning
algorithms. Neural computation, 10(7):1895-1923.

Dubitzky, W., Granzow, M., and Berrar, D. P. (2007). Fundamentals of data mining in genomics and
proteomics. Springer Science & Business Media.

Efron, B. (1983). Estimating the error rate of a prediction rule: improvement on cross-validation.
Journal of the American statistical association, 78(382):316-331.

Efron, B. (1986). How biased is the apparent error rate of a prediction rule? Journal of the American
statistical Association, 81(394):461-470.

Farajtabar, M., Chow, Y., and Ghavamzadeh, M. (2018). More robust doubly robust off-policy
evaluation. In International Conference on Machine Learning, pages 1447-1456. PMLR.

10

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2020). D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219.

Fujimoto, S., Meger, D., and Precup, D. (2019). Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pages 2052-2062. PMLR.

Futoma, J., Hughes, M. C., and Doshi-Velez, F. (2020). Popcorn: Partially observed prediction
constrained reinforcement learning. arXiv preprint arXiv:2001.04032.

Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the American
statistical Association, 70(350):320-328.

Gilpin, A. R. (1993). Table for conversion of kendall’s tau to spearman’s rho within the context of
measures of magnitude of effect for meta-analysis. Educational and psychological measurement,
53(1):87-92.

Guo, Y., Feng, S., Le Roux, N., Chi, E., Lee, H., and Chen, M. (2020). Batch reinforcement learning
through continuation method. In International Conference on Learning Representations.

Jiang, N., Kulesza, A., Singh, S., and Lewis, R. (2015). The dependence of effective planning horizon
on model accuracy. In Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, pages 1181-1189. Citeseer.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T. (2020). Morel: Model-based offline
reinforcement learning. Advances in neural information processing systems, 33:21810-21823.

Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., and Faisal, A. A. (2018). The artificial
intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nature
medicine, 24(11):1716-1720.

Krzanowski, W. and Hand, D. (1997). Assessing error rate estimators: the leave-one-out method
reconsidered. Australian Journal of Statistics, 39(1):35-46.

Kumar, A., Singh, A., Tian, S., Finn, C., and Levine, S. (2021). A workflow for offline model-free
robotic reinforcement learning. In 5th Annual Conference on Robot Learning.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179-1191.

Le, H., Voloshin, C., and Yue, Y. (2019). Batch policy learning under constraints. In International
Conference on Machine Learning, pages 3703—3712. PMLR.

Lee, J. N., Tucker, G., Nachum, O., and Dai, B. (2021). Model selection in batch policy optimization.
arXiv preprint arXiv:2112.12320.

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643.

Liao, P., Greenewald, K., Klasnja, P., and Murphy, S. (2020). Personalized heartsteps: A reinforce-
ment learning algorithm for optimizing physical activity. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 4(1):1-22.

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E. (2019). Off-policy policy gradient with
stationary distribution correction. In Globerson, A. and Silva, R., editors, Proceedings of the
Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July
22-25, 2019, volume 115 of Proceedings of Machine Learning Research, pages 1180-1190. AUAI
Press.

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E. (2020). Provably good batch reinforcement
learning without great exploration. Advances in neural information processing systems, 33.

Mandlekar, A., Ramos, F., Boots, B., Savarese, S., Fei-Fei, L., Garg, A., and Fox, D. (2020).
Iris: Implicit reinforcement without interaction at scale for learning control from offline robot
manipulation data. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 4414-4420. IEEE.

11

Mandlekar, A., Xu, D., Wong, J., Nasiriany, S., Wang, C., Kulkarni, R., Fei-Fei, L., Savarese, S., Zhu,
Y., and Martin-Martin, R. (2021). What matters in learning from offline human demonstrations for
robot manipulation. In 5th Annual Conference on Robot Learning.

Mandlekar, A., Zhu, Y., Garg, A., Booher, J., Spero, M., Tung, A., Gao, J., Emmons, J., Gupta, A.,
Orbay, E., et al. (2018). Roboturk: A crowdsourcing platform for robotic skill learning through
imitation. In Conference on Robot Learning, pages 879-893. PMLR.

Mazoure, B., Mineiro, P., Srinath, P., Sedeh, R. S., Precup, D., and Swaminathan, A. (2021).
Improving long-term metrics in recommendation systems using short-horizon reinforcement
learning. arXiv preprint arXiv:2106.00589.

Metelli, A. M., Papini, M., Faccio, F., and Restelli, M. (2018). Policy optimization via importance
sampling. Advances in Neural Information Processing Systems, 31.

Miyaguchi, K. (2022). A theoretical framework of almost hyperparameter-free hyperparameter
selection methods for offline policy evaluation. arXiv preprint arXiv:2201.02300.

Oberst, M. and Sontag, D. (2019). Counterfactual off-policy evaluation with gumbel-max structural
causal models. In International Conference on Machine Learning, pages 4881-4890. PMLR.

Owen, A. B. (2013). Monte carlo theory, methods and examples.

Paine, T. L., Paduraru, C., Michi, A., Gulcehre, C., Zolna, K., Novikov, A., Wang, Z., and de Fre-
itas, N. (2020). Hyperparameter selection for offline reinforcement learning. arXiv preprint
arXiv:2007.09055.

Pomerleau, D. A. (1991). Efficient training of artificial neural networks for autonomous navigation.
Neural computation, 3(1):88-97.

Precup, D. (2000). Eligibility traces for off-policy policy evaluation. Computer Science Department
Faculty Publication Series, page 80.

Shi, C., Wan, R., Song, R., Lu, W., and Leng, L. (2020). Does the markov decision process fit the
data: Testing for the markov property in sequential decision making. In International Conference
on Machine Learning, pages 8807-8817. PMLR.

Siegel, N., Springenberg, J. T., Berkenkamp, F., Abdolmaleki, A., Neunert, M., Lampe, T., Hafner,
R., Heess, N., and Riedmiller, M. (2020). Keep doing what worked: Behavior modelling priors for
offline reinforcement learning. In International Conference on Learning Representations.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the
royal statistical society: Series B (Methodological), 36(2):111-133.

Su, Y., Srinath, P., and Krishnamurthy, A. (2020). Adaptive estimator selection for off-policy
evaluation. In International Conference on Machine Learning, pages 9196-9205. PMLR.

Tang, S. and Wiens, J. (2021). Model selection for offline reinforcement learning: Practical con-
siderations for healthcare settings. In Machine Learning for Healthcare Conference, pages 2-35.
PMLR.

Thomas, P. and Brunskill, E. (2016). Data-efficient off-policy policy evaluation for reinforcement
learning. In International Conference on Machine Learning, pages 2139-2148. PMLR.

Thomas, P., Theocharous, G., and Ghavamzadeh, M. (2015a). High confidence policy improvement.
In Bach, F. and Blei, D., editors, Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 2380-2388, Lille,
France. PMLR.

Thomas, P., Theocharous, G., and Ghavamzadeh, M. (2015b). High confidence policy improvement.
In International Conference on Machine Learning, pages 2380-2388. PMLR.

Thomas, P. S., Castro da Silva, B., Barto, A. G., Giguere, S., Brun, Y., and Brunskill, E. (2019).
Preventing undesirable behavior of intelligent machines. Science, 366(6468):999-1004.

12

Voloshin, C., Le, H. M., Jiang, N., and Yue, Y. (2021). Empirical study of off-policy policy evaluation
for reinforcement learning. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

Xie, T. and Jiang, N. (2021). Batch value-function approximation with only realizability. In
International Conference on Machine Learning, pages 11404-11413. PMLR.

Yin, M., Bai, Y., and Wang, Y.-X. (2021). Near-optimal offline reinforcement learning via double
variance reduction. Advances in neural information processing systems, 34.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S., Finn, C., and Ma, T. (2020). Mopo:
Model-based offline policy optimization. Advances in Neural Information Processing Systems,
33:14129-14142.

Zanette, A. and Brunskill, E. (2019). Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. In International Conference on
Machine Learning, pages 7304-7312. PMLR.

Zhang, S. and Jiang, N. (2021). Towards hyperparameter-free policy selection for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 34.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7 and Section 8.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 4.1
and Section A.3.
(b) Did you include complete proofs of all theoretical results? [Yes] See Section 4.1 and
Section A.3.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] See Supple-
mentary Material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sections 6, A.14, A.16, A.17, A.18 and A.19

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [N/A] Open-source

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Appendix

A.1 Prelude Experiment

In this section, we put ourselves in a situation where model selection would be performed by
comparing different AH pairs on their internal objective or value function estimates on a given
dataset, as described near the beginning of Section 1. We use three datasets of different qualities
(random, medium, and medium-expert) of the popular Hopper task from the D4RL benchmark (see
Appendix A.14 for a detailed description) to train a total of 36 policies with different AH pairs and
then calculate the resulting TD-Errors and Q-values on the whole dataset at the end of training.

To evaluate the performance one would obtain by employing such an approach to select the best
policy, we report in Table A.1 the performance (true return in the environment) of the selected policies
and compare them with the performance of the optimal policy for each of the datasets. The policies
are selected either by finding the one which corresponds to the lowest TD-Error, or the one which
corresponds to the highest Q-value. We also include the Kendall rank correlation coefficient (Gilpin,
1993) for each of the ranking methods (ranking with respect to TD-Error or Q-value) compared with
the “true ranking” of policies ranked with respect to the performance in the environment:

(number of concordant pairs) — (number of discordant pairs)
n
2

where n is the number of policies, and where “concordant pairs” are pairs from the two compared
rankings for which the sort order agrees. A coefficient of 1 means the agreement between the two
rankings is perfect.

T =

TD-Error \ Q-value \
Policy Selected Policy Selected Optimal Policy
(True Return) Kendall (True Return) Kendall (True Return)
random 334.24 -0.09 333.65 -0.15 345.39
medium 1475.82 0.42 2381.37 0.21 2469.81
medium-expert 327.97 -0.18 327.97 -0.09 3657.80

Table A.1: Average Return (True Return obtained in the simulator) of the policy selected with respect
to min(TD-Error) or max(Q-value) on the training dataset with a comparison to the True Return
obtained by the Optimal Policy. Kendall rank correlation coefficient when ranking with respect to the
same metrics. Policies are trained and validated on the same dataset. Task: Hopper.

Unsurprisingly, Table A.1 shows that one cannot rely on this straightforward pipeline to select
a best-performing AH pair. Actually, for most of the datasets (the medium-expert dataset should
resemble the most to what a dataset would look like in a real-world situation as it is composed of
both high-quality and medium-quality data), following such an approach would produce and deploy a
very bad performing policy.

A.2 Connection between Leave-p-Out CV and RRS

Our RSS is a finite approximation of Leave-p-out (Lp0) cross-validation!. LpO is known in supervised
learning, but rarely used due to the computational burden. The correctness of LpO is proved
itecelisse2014optimal in a supervised learning setting with projection estimators. Unlike K-fold
cross-validation, Leave-p-out CV selects p data points for evaluation and the rest for training. In
our proposed RSS method, we set p = n/2, and instead of exhaustively enumerating all possible
selections of p data points out of n data points, we only repeat this process K times. Asymptotically
as the amount of data goes to infinity, this approach should be correct, but also a single train/test split
will also be correct in such a setting. The key challenges arise in the finite data setting, where the
choice of dataset partitioning is key.

"https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
LeavePOut.html

15

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePOut.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePOut.html

A.3 Proof of Theorem 1

Consider a finite set of J offline RL algorithms .A. Let the policy produced by algorithm .A; on training

dataset D be 7, its estimated performance on a validation set V™7, and its true (unknown) value be
V7. Denote the true best resulting policy as 7« = argmax,; V" and the corresponding algorithm

A;-. Let the best policy picked based on its validation set performance as T;. = argmax; V7™ and
the corresponding algorithm Aj*.

Theorem 1. Then there exist stochastic decision processes and datasets such that (i) using a single
train/validation split procedure will select a suboptimal policy and algorithm with significant finite
probability, P(r;. # mj«) > C, with corresponding substantial loss in performance O(Vinaz),
and, in contrast, (ii) averaging across Ny train/validation splits will select the optimal policy with

probability 1: limpy, 0 P(T{'j* =) — 1.

Proof. We proceed by constructing a stochastic decision process. A common domain to illustrate
the importance of strategic exploration is a chain MDP. Here consider an episodic, finite horizon,
finite chain, deterministic decision process with 6 states, s1, ..., sy, (H = 6) with two actions. a;
moves the state one down except for at the starting state, and ay increments the state one up except for
the final state: more formally, p(s;—1|s;,a1) = 1 except for p(s1|s1,a1) = 1; p(s;+1]si, az) except
for p(sg|sm,a2) = 1. The reward is O in all states except R(s1) = 1/6 and R(sg) = 201. All
episodes are length H = 6 and start in state s;. The optimal policy always takes a2 and achieves
Vinaz = R(sg). Any other policy achieves at most H * 1/6 = 1 reward.

The behavior policy is uniform random over the two actions, m(a1|s) = 0.5 = mp(az). Let the
available offline dataset D consist of 200 episodes gathered using 7. Given the behavior policy,
each of the 64= 2¥ unique trajectories has an equal probability of being observed, and only one
of these 7, = (81,0, as, $2,0, as,, $3,0, as, 4,0, as, $5, as, sy, R(sy)) achieves the highest return.
On average out of 200 episodes®, n., =3(=round(|D|/(2))) episodes will match 7;,. All other
episodes will have a return of 1 or less.

Let there be a set of H offline RL algorithms .4y, each which optimizes the reward over a different
horizon h = 1 : H, by constructing a maximum-likelihood estimate (MLE) MDP model M given
a training dataset Dy,., and then computing a policy 7, that optimizes the h-step value given the
learned MDP M model® For example, algorithm A, will take the MLE MDP model and construct
a policy to optimize the sum over rewards for the next two time steps m2(s) = arg max, r(s) +
>« p(s’|s,a)r(s"). We think this is a reasonable set of algorithms to consider as an illustrative
example: the horizon length can directly influence the amount of data needed to compute an optimal
policy, and recent work has explored using shorter horizons (Cheng et al., 2021; Mazoure et al., 2021;
Liao et al., 2020), so choosing the right horizon can be viewed as a bias/variance tradeoff, suitable
for automatic model selection.

Observe that even if given access to the true (unknown) MDP parameters, algorithms Ay, ..., Ay _;
will compute a policy that is suboptimal: due to the shortened horizon length, to optimize the expected
total reward, the resulting policy computed for s; will be 7, (s1) = m1(s1) = a1 for these algorithms
Ap, h=1: H — 1. As the MDP is deterministic, this will also be true for any input dataset.

We now consider the impacts of partitioning the input dataset into a training dataset D;,. taken as input
by each algorithm Aj, to compute a policy 7}, and an evaluation/test dataset Dy: D = Dy U Dy,.
For algorithm Ay to learn the optimal policy 7* which achieves V4., it must learn over a dataset
Dy, that includes one or more examples of the highest return trajectory 7. Note that a single episode
of 73, in the training set is sufficient to learn the optimal policy”.

2Qur calculations can easily be extended to cases where there are different numbers of observed 7, but for
simplicity we assume a dataset where the average expected number of 7, are observed.

3During planning with the learned MDP model, we restrict taking the maximum value over actions for a
given state s to only actions that have been taken at least once in that state in the dataset, €.g. MaXg s.¢. n(s,a)>1»
where n(s, a) is the counts of the number of times action a was taken in state s in the dataset. Note that in a
finite dataset, some states and/or actions may not be observed, and this common choice simply ensures that the
algorithm does not overestimate the value of untried actions.

4 A single example of 7, will induce a MLE M with the correct reward model for all states, and the dynamics

model for action az. From the procedure used to compute an optimal policy M, this will result in an optimal
policy.

16

Assume that the offline evaluation of the policies learned by the algorithm on D, is performed
using importance sampling on D;.: note, our results will still apply, with minor modifications, if
off policy evaluation is performed on D,. using fitted Q evaluation (Le et al., 2019) or using a
certainty-equivalent MDP constructed from D,..

Then the off policy evaluation of the policy learned by the full horizon algorithm Ay, v (s1), will
only be greater than 1 if there also exists at least one episode of the highest return trajectory 7.

Assume the training dataset and validation dataset are constructed by randomly sampling 50% of the
episodes to be in each. By assumption, there are n,, samples of 75, which have an equal chance of
being in either the training or validation set. There are n,, + 1 ways to partition the n,, exchangable
episodes of 73, into the training and validation sets, here ([3, 0], [2, 1], [1, 2], [0, 3]). Note the training
and validation set are identical in size (|D|/2 trajectories each), and we only care about whether

a trajectory 7 is identica%) Oto Th.OF Ig%t. The probability that each of these partitions occurs is :
P([3,0]) = P([0,3]) = éﬁ * 759 * Tog ~ 0.123.

From the above analysis, Az can only learn an optimal policy, and its estimated value VT o> 1
on Dy, if there is at least one 7, in both the training and validation set datasets, which occurs in
partitions ([2, 1], [1, 2]). This occurs with probability 0.754. Otherwise, either (a) Ax will not learn
an optimal policy, and instead will learn 7w (s1) = 71(s1) = a1, or (b) Ay will learn an optimal
policy mg(s1) = ao but as the validation dataset does not contain 75,, V™% = 1/H < V™. In
both cases, the selected policy given its performance on the validation set will be 71 (s1) = a1. The
resulting loss in performance is Viar — V™ = Vipax — 1 = O(Vinax). This failure occurs with
substantial probability 24.6%. This proves part (i) of the theorem.

To prove part (ii) of the proof, we consider cases where at least one 7y, is in both Dy, and D,.. Note

ymo< If/(;}{) = 1/% Define E; as a "successful split": the event that 1 or more of 7, (high returns)

episodes are in D,., but not all n, . On event E;, the optimal policy (which will be computed by
A on the training set), will have an estimated value on Dy, using importance sampling:

. .1 R(sy) 1 201

T > — - 2/\71'1 2
Vis 2 o127 ~ 1728 100~ 2V @

since there are at least 1 7, trajectories, each with propensity weight # and reward R(sg).

Therefore on Event F, the optimal policy can be learned and estimated as having high reward. The
probability of event E; is greater than 0.5: P(E,,) = 0.754.

In the repeated train-validation split setting, the algorithm selected is the one that has the best
performance on the validation set, on average across all [V, splits. Let E}, be the event that at least
half the train-validation dataset splits are successful (Event Es holds for that split). In this case then
the average performance of A5 will be at least

~ 1 [Ng~ -«

Va, > (“VE + 0)

N, \ 2

1 /N, -
> —Eoy™ 4
> NS(2 +)
= Vﬂ-l’

where the first line uses a lower bound of O when the event E fails to hold, and substitutes in
Equation 2. Therefore as long as event E}, holds, the optimal policy 7* (which will be computed by
algorithm Az will be selected. Since P(E,4) > 0.5, the probability” as the number of splits goes to
infinity that F;, holds on least half of those splits goes to 1: limy, oo P(Ex) — 1.

S#kcalculate for finite S.

17

A.4 SSR pseudo-code

Algorithm 1 SSR-RRS: A; Selection with Repeated

Random Sub-sampling

Input: offline RL data D; set of AH pairs
[Aq, As, ..., A,], OPE estimator v, split
number K € N.

Output: policy 7* for deployment

R=0

for i <+ 1...K do

Rirain pyalid — sypsample (D, 0.5)
R =RU (Rgrain, Rzzalid)

end

Gg=1Il

fori <« 1...zdo
S=[]

for j <~ 1...K do
= A(R;raln)
Sij = ‘7(7'(1‘; R}/alid)
end

Gi= 7 501 Sij

end
A* = A,4 where 0o = arg max(G)
™ = A*(D)

return 7>

A.5 Code

We include the implementation and experiment code here: https://github.com/
StanfordAI4HI/Split-select-retrain

A.6 Experiment Detail Summary

We choose different sets of algorithms to evaluate our pipeline in every domain to demonstrate the
generality of our approach and because some algorithms have limitations inherent to certain types of
domains to which they can be applied. We list them in Table A.2.

Running a large number of algorithm-hyperparameter pairs many times is very computationally
expensive. In order to save time and resources, we leverage the fact that multiple approaches can
share resources. We describe how we compute the numbers for each approach as follows:

For each offline RL dataset in Sepsis, TutorBot, Robomimic, and D4RL, we produce the following
partitions (we refer to this as the “partition generation procedure”):

1. 2-fold CV split (2 partitions consisted of (S;))
2. 5-fold CV split (5 partitions consisted of (S;))
3. 5 RRS split (5 partitions consisted of (R{rain Ryalid))

Here, we briefly describe how to use these data partitions to select algorithms with alternative
approaches.

One-Split OPE. The One-Split OPE method can be conducted to train and evaluate an algorithm
on any of the RRS splits being produced, but only look at one split, without considering other splits.
We let for a particular 4, we let Dyyain = R and Dyapiq = R4,

BCa Bootstrap. Similar to the One-Split OPE method, we can use RRS split for bootstrap. For
a particular i, we let Diyain = R and Dyaiq = R;’ahd. Bootstrapping will re-sample with

18

https://github.com/StanfordAI4HI/Split-select-retrain
https://github.com/StanfordAI4HI/Split-select-retrain

Experiment Number of TA\{erage Numl?e:r of AH Pairs Algorithms in
. . . rajectory Transitions .
Domain Trajectories (N) - Evaluated Experiment
Length in Total
BC, POIS, BC+POIS,
Sepsis-POMDP 200 14 2792 540 BC+mini-POIS, BCQ,
MBSQI, pMDP, MOPO
BC, POIS, BC+POIS,
Sepsis-POMDP 1000 14 13708 540 BC+mini-POIS, BCQ,
MBSQI, pMDP, MOPO
. BC, POIS, BCQ,
Sepsis-POMDP 5000 14 68576 148 MBS-QIL, pMDP, MOPO
BC, BCQ, MBSQI, pMDP,
Sepsis-MDP 200 14 2792 383 POIS, BC + POIS
BC+mini-POIS
BC, POIS, BC+POIS,
TutorBot 200 5 987 81 BC+mini-POIS
Robomimic BC, BCRNN, CQL,
Can-Paired 200 235 47,000 3 RIS, BCQ
Robomimic BC, BCRNN, CQL,
Transport 200 470 94,000 10 IRIS, BCQ
kL 500 1000 500000 4x4 BCQ
opper
D4RL
HalfCheetah 500 1000 500,000 4x4 BCQ

Table A.2: List of algorithms being used in which domain. 4 x 4 means we evaluate 4 AH pairs for
the policy learning and 4 AH pairs for the policy evaluation estimators (FQE).

replacement on trajectories in Dy,iq to create (largely) overlapping subsets By, B, ..., By, with

| B;| = n. We then evaluate 7, on each subset using V. The final score is computed through a bias
correction process with an added acceleration factor (BCa).

Nested K x 2-fold Cross-Validation. We can also use the RRS split partitions to produce K x 2
Nested CV by taking one RRS split (R¥#n RYalid) by doing the following procedure:

V(A(R%rain); R;/alid) + V(A(R;/alid); RErain)
2

S; =

3)
1 K
JaNcvi = 3 ;s 4)

Intuitively, for K x 2 Nested CV, we just need to swap the train and valid set produced by repeated
sub-sampling and average to produce the algorithm performance score for a particular split ¢. Then
we average the scores to get a final score for the algorithm.

2-fold Cross-Validation. Similar to the K x 2 Nested CV, we can choose the i-th partition generated
by the 10 RRS split procedure, and compute the score according to Equation 3. We do this for the
Sepsis and TutorBot domains, but we do not do this for the Robomimic domain.

Batch Value Function Tournament (BVFT) Xie and Jiang (2021); Zhang and Jiang (2021)
proposed to use pairwise Q-function comparisons to select the optimal Q-function from a set of
Q-functions. Given Q);, @;, let G;; be the piecewise constant function class induced by binning (s, a)
and (s',a') if Q;(s,a) = Q,(s',a’). Given an offline dataset D, we can compute the BVFT loss as

19

follow:
1

T6.,Q = al;geér;in D] > llg(s,a) —r - 7 max Q(s',a"))?] o)
gek (Qu Qj) = HQZ - IfgiijH?,D (6)
gfk (Ql) = mjax gﬁk (Qi7 QJ) (7)

Zhang and Jiang (2021) proposed a method to automatically search through different discretization
resolutions (ex). In our experiment, we search through [0.1,0.2,0.5,0.7,1.0, 3.0, 10.0]. We use the
BVFT code provided by Xie and Jiang (2021). Because BVFT can only compare Q-functions, Zhang
and Jiang (2021) offered two strategies to perform policy selection for any model/algorithm. Here we
briefly describe two strategies:

» Strategy 1 (7 x FQE): if we have 4 policies, and each policy is evaluated by 4 FQEs, then
this strategy will compare 16 Q-functions (4 7 x 4 FQE).

» Strategy 2 (7 + FQE): if we have 4 policies, and each policy is evaluated by 4 FQEs, then
this strategy will first run BVFT to compare 4 Q-functions (1 7 x 4 FQE), select the best
Q-function for each 7 (4 m x 1 FQE), then we select the best policy by the average Q-value
computed by each FQE.

We generally find strategy 2 more computationally efficient (because it makes a smaller number of
comparisons). BVFT generally has O(.J?) time complexity where J is the number of Q-functions
that need to be compared — it’s easy to see that 162 = 256 is much larger than 42 = 16.

Our repeated experiment protocol (RRS) is reliant on choosing a good FQE. In order to compare
fairly, for m x FQE strategy, we only use the optimal FQE (the ones used in RRS and CV and
one-split). We can see that in this condition, BVFT can do pretty well (even outperforming RRS
in the D4RL-Hopper medium setting). For = + FQE, because it focuses on the selection of FQE,
we try 4 different FQE hyperparameters. We discuss this more in D4RL Experiment Details (in
Section A.19).

A.7 Computational Complexity

Most of the approaches we discussed in Section A.6 leverage multiple repetitions (resampling) to
account for data allocation randomness. We provide a time complexity table below and define the
following terms:

* H = number of AH pairs to evaluate

* N = total data samples. We assume the training time for each trajectory is N; and evaluation
time for each trajectory is Ny, where N = N; + N,

* M = number of folds in multi-fold cross-validation

* B = number of bootstraps (this number is 100 in our experiment)

* P = number of resolutions for BVFT’s grid (proposed in Zhang and Jiang (2021))
* F = number of FQE hyperparameters (proposed in Zhang and Jiang (2021))

For BVFT, one can amortize the computational cost by caching (storing Q(s, a) for all (s, a) in the
dataset). If caching is done only once, we treat the actual computation time for the validation data
set as no. P is usually between 5 and 10. When H is relatively large, for example, H = 540 (in our
experiment), H * H = 2.916e5. It’s easy to see that RRS is slightly more expensive than M-Fold
CV but less expensive than the pairwise comparison tournament algorithm (BVFT). Zhang and
Jiang (2021) proposed BVFT-FQE that only makes pairwise tournament comparison between FQE
hyperparameters — F is 5 in our experiments. It’s also worth noting that BCa has a high evaluation
cost when B is large — when B = 100, BCa evaluation cost is significantly higher than CV and RRS.

A.8 Sensitivity to OPE Methods

OPE is often a critical part of OPL, which has motivated significant research into OPE. Thus the
employed OPE method will likely impact the performance of our proposed pipeline. As has been

20

Training Complexity Evaluation Complexity

One-Split Hx N; H x Ny

Bootstrapping (BCa) Hx N; H x B x Ny

M-Fold Cross-Validation (=HH><XMN><X]\£§</I_(11\)/I -DHM (=HHX XNII\IX N> 1HM
K-Repeat RRS Hx Kx N; H x K x Ny

BYFT . Hx N (H x H) x Ny or

(Xie and Jiang, 2021) 1 (H x H) x ng
BVFT-auto . Hx N P x (H x H) x Ny or
(Zhang and Jiang, 2021) 1 P x (H x H) x ngy
BVFT-FQE P x H x (F x F) x Ny or

HXN1

(Zhang and Jiang, 2021) PxHXF xF) xny

demonstrated in a recent bake-off paper (Voloshin et al., 2021), minimal-assumption OPE methods
like weighted doubly robust methods (e.g. Jiang et al. (2015); Thomas and Brunskill (2016)) may be
most consistently accurate for many domains. However if the domain is known to be Markov and the
models are well specified, FQE methods will likely be more accurate in small data regimes.

To explore further the impact of the choice of OPE method, we conducted an additional experiment
on the Sepsis-POMDP domain. The aim to was to look at the sensitivity of SSR-RRS for picking
the best AH to the choice of OPE estimators. In addition to the prior OPE methods used in the main
text, we included clipped IS (importance sampling), CWPDIS (Thomas and Brunskill, 2016), and 8
different FQE OPE variants, in which different networks, learning rate and epochs were used.

Best AH Performance

Sepsis-POMDP Parameters Chosen by
SSR-RRS K=5
FQE-1 [64], Ir=3e-4, epoch=20 2.84
FQE-2 [64], Ir=1e-5, epoch=20 -74.26
FQE-3 [64], Ir=3e-4, epoch=50 -20.88
FQE-4 [64], Ir=1e-5, epoch=50 -14.16
FQE-5 [128], Ir=3e-4, epoch=20 -75.26
FQE-6 [128], Ir=1e-5, epoch=20 -14.48
FQE-7 [128], Ir=3e-4, epoch=50 -75.54
FQE-8 [128], Ir=1e-5, epoch=50 -74.26
IS N/A 4.47
CWPDIS N/A 4.68
WIS N/A 6.75

Table A.3: Using different OPE estimators in the SSR-RRS pipeline. FQE-1 denotes the FQE with the
optimal FQE hyperparameter (heuristically chosen).

First, using FQE does generally much worse in this setting which is not very surprizing: FQE assumes
the domain is Markov, which Sepsis-POMDP is not.

All importance-sampling based OPE methods yield quite similar performing algorithm-
hyperparameter choices in this setting.

While there are some clear differences, if some basic information about the domain is known (Markov
or not), it is likely possible to select a pretty good OPE. In addition, prior work has proposed
heuristics (Voloshin et al., 2021) or automatic methods for automatic OPE selection (Su et al., 2020;
Lee et al., 2021). An interesting direction for future work would be to include such methods in the
pipeline.

21

We highlight that while it is well known that OPE methods are important, our paper focused on
an under-explored issue: that the dataset partitioning can also introduce a substantial amount of
additional impact on learning good policies / selecting good AH.

A.9 Robustness of SSR-RRS

In Table 3, we only show the performance of the best policy among all AH pairs. Here we show
that SSR-RRS can still robustly select a good hyperparameter for a given offline RL policy learning
algorithm (the gap between best AH selected and true best AH is relatively small).

Range of True

Sepsis-POMDP Policy Performance Percentile of AH Performance of AH True Best AH

Chosen by SSR-RRS Chosen by SSR-RRS ~ Performance

(95%CI)
BCQ [-10.8, -0.73] 94% 5.98 7.86
MBSQI [-7.34, -2.26] 95% 6.40 7.42
BC [-8.98, -8.37] 58% -8.46 -7.42
BC+PG [-5.55, -4.26] 78% -3.68 2.52
P-MDP [-31.17, -21.26] 83% 0.23 2.82

Table A.4: We show the relative position (percentile) of the AH selected by SSR-RRS K=5 pipeline.

For each algorithm, we evaluate over 24 to 72 hyperparameters, and we compute the 95% confi-
dence interval of all these policies’ true performance. Except for behavior cloning, we are picking
hyperparameters that are out-performing 78%-95% of other hyperparameters in the same algorithm.

A.10 Is FQE biased towards FQI algorithms?

In our evaluation on the Sepsis domain, FQE is used to evaluate both BCQ and MBSQI (both
FQI-based) and BC and BCPG (policy-gradient algorithms).

We designed the following analysis experiment using our logged results. We first rank all AH pairs
(540 of them) with their true performance in the simulator, and then we count the percentage of FQI
(BCQ, MBSQI) algorithms that appear in the top 10%, 20%, and 50% percentile. The number in
each cell should be read as: “90.7% of AH pairs in the top-10% based on True Performance are
FQI-based”. If FQE is biased towards FQI algorithms, we expect to see a higher percentage of
BCQ and MBSQI AH pairs selected than the true performance baseline and compared to other OPE
methods.

Sepsis-POMDP % of BCQ and MBSQI % of BCQ and MBSQI
OPE Method AHs in Top-10% AHs AHs in Top-20% AHs

True Performance 90.7% 61.1%
FQE-1 0% 0%

WIS 9.4% 35.5%

RRS-5 WIS 68.5% 58.3%

Table A.5: Examining whether FQE as an estimator will prefer FQI policy learning algorithms.

Based on this analysis, we believe that FQE is not biased to select FQI-based algorithms in the
Sepsis-POMDP domain. However, our analysis is limited to one domain and only on two FQI-based
algorithms. Further investigation is needed but beyond the scope of our paper.

A.11 Additional Discussions

Sensitivity to K in small and large datasets In general, we expect the issue of data partitioning
into a train and test split is most important in small datasets: as the dataset gets very large, a single
train/test split will generally work well. Therefore, we suggest using a larger K for smaller datasets,
but for larger datasets, a smaller K will likely be sufficient. Using our theoretical example in the

22

appendix (chain-MDP), this can also be observed — with a larger N, the failure probability for smaller
numbers of repeats decreases. This N-K tradeoff has computational benefits if there is a limited
computational budget (larger datasets will require more training, therefore, harder to use a larger K).

Weighted importance sampling (WIS) as a biased estimator WIS is a self-normalizing impor-
tance sampling estimator. We refer readers to Owen (2013) Chapter 9 for a more detailed discussion
on the statistical properties of this type of estimator. In Section 4.1 (line 174), we state:

WIS will return the observed return of the behavior policy if averaging over a single
trajectory, independent of the target policy to be evaluated.

In brief, WIS works by first computing the probability of the dataset trajectory appearing under the
evaluation policy and behavior policy:

L
w; = H 7'('6(0,75|St)
™

b(at\st)

Then, this coefficient is normalized before multiplying with the trajectory return, therefore:

WIS(D Z Z Z ~'RY).

w3

Perhaps surprisingly, if there is a single trajectory, n = 1, this implies

L
WIS(D) = —(Z YR =Y 'R
t=1
Here WIS is a biased estimator that returns the trajectory weighted reward, independent of w;.

A.12 Additional Experiment

We report the DARL HalfCheetah result over the same setting as D4ARL Hopper, where the result is
averaged over 20 runs.

Re-trained BVFT BVFT CcV2 CV.5 SSR SSR Optimal
on full dataset 7 x FQE m + FQE RRS-2 RRS-5 Policy
D4RL (HalfCheetah):
random -1.14 1106.94 -1.13 -1.13 1922.07 1922.07 1922.07

medium 4421.95 429033 4290.33 4290.33 4290.33 429033 4517.96
medium-expert 8118.84 8799.66 8118.84 8118.84 9681.78 9681.78 10364.36

Table A.6: Additional comparison of the performance obtained by a policy deployed using the SSR
pipeline vs. using 1-split policy selection approaches on D4RL HalfCheetah. Cells = average true
return.

A.13 Figure Generation Procedure

Given our partition generation procedure, there are some methods (One-Split OPE, K x 2 Nested CV,
and SSR-RRS K when K < 5) that have a few different partitions to choose from. For example, out
of the 5 RRS split partitions, which partition should we choose for the One-Split OPE method? If we
choose one partition, and the One-Split method cannot select the best algorithm, does that mean the
One-Split method is bad, or could the 9 other partitions do better for the One-Split method? In order
to evaluate these approaches fairly, we exhaustively train and evaluate on the 5 RRS splits, swap
the train/valid set, and train/evaluate on them again, generating 20 scores. For the aforementioned
methods, we randomly sample from these 10 (or 20, if Nested CV is being evaluated) scores to
simulate the setting that we happen to get one particular split. We run this sampling procedure
multiple times and compute the average performance of the policies that are chosen by conditioning
on one or K particular partitions.

23

A.14 Domain Descriptions

Sepsis. The first domain is based on the simulator and works by Oberst and Sontag (2019) and
revolves around treating sepsis patients. The goal of the policy for this simulator is to discharge
patients from the hospital. There are three treatments the policy can choose from antibiotics,
vasopressors, and mechanical ventilation. The policy can choose multiple treatments at the same time
or no treatment at all, creating 8 different unique actions.

The simulator models patients as a combination of four vital signs: heart rate, blood pressure, oxygen
concentration and glucose levels, all with discrete states (for example, for heart rate low, normal and
high). There is a latent variable called diabetes that is present with a 20% probability which drives the
likelihood of fluctuating glucose levels. When a patient has at least 3 of the vital signs simultaneously
out of the normal range, the patient dies. If all vital signs are within normal ranges and the treatments
are all stopped, the patient is discharged. The reward function is 41 if a patient is discharged, —1 ifa
patient dies, and O otherwise.

We follow the process described by Oberst and Sontag (2019) to marginalize an optimal policy’s
action over 2 states: glucose level and whether the patient has diabetes. This creates the Sepsis-
POMDP environment. We sample 200, 1000, and 5000 patients (trajectories) from Sepsis-POMDP
environment with the optimal policy that has 5% chance of taking a random action. We also
sample 200 trajectories from the original MDP using the same policy; we call this the Sepsis-MDP
environment.

Robomimic. Our approach is further evaluated on a third domain, Robomimic (Mandlekar et al.,
2021), consisting of various continuous control robotics environments along with corresponding
sets of suboptimal human data. More specifically, we use the Can-Paired dataset composed of
mixed-quality human data. These 200 demonstrations include an equal combination of “good” (the
can is picked up and placed in the correct bin) and “bad” trajectories (the can is picked up and
thrown out of the robot workspace). The initializations of the tasks being identical, it is expected that
algorithms dealing with suboptimal data will be able to filter out the good trajectories from the bad
ones and achieve near-optimal performance. Interestingly, state-of-the-art batch RL algorithms do
not reach maximum performance (Mandlekar et al., 2021), making this task a good testbed for our
procedure. We also use the Transport dataset, where two robot arms must transfer an object from
one bin to another. The dataset contains 200 successful trajectories collected by one human operator.

D4RL. D4RL (Fu et al., 2020) is an offline RL standardized benchmark designed and commonly
used to evaluate the progress of offline RL algorithms. We use 3 datasets of different quality from the
Hopper task: hopper-random with 200k samples from a randomly initialized policy, hopper-medium
with 200k samples from a policy trained to approximately 1/3 the performance of a policy trained to
completion with SAC ("expert"), and hopper-medium-expert with 200k samples from a 50-50 split
of medium and expert data. The Hopper task is to make a hopper with three joints, and four body
parts hop forward as fast as possible.

A.15 TutorBot Domain

We introduce a new TutorBot simulator that is designed to mimic 3-5th grade elementary school
children in understanding the concept of calculating volume, and engaging them while doing so. We
base certain aspects of this simulator on some experimental studies of this learning environment,
where an RL policy can learn to teach. The state space includes children’s pre-test score, anxiety
level, thinking time, and whether it’s the last question in the tutoring session. The action is to offer
encouragement, a guided prompt, or a hint at each step of the tutoring.

The dynamics of TutorBot is a 4th-order Markov transition function that takes in anxiety and the
amount of thinking time and updates a latent parameter that captures learning progress. For each
simulated student learning trajectory, we pre-determine how many times this student will interact
with the TutorBot. We denote this as 7', which is the trajectory length. We calculated the relationship
between 1" and the pre-test score based on the aforementioned experimental study.

T = round(7 — 0.46 * pre-test + 1),l ~ U([—1,2])
6, = [0,—0.05,—0.2, —0.5], 6, = [0.5,0.3,0.2,0]

T(s14181, ar) = |pre-test, [S¢—3, S1—2, St—1, 8¢)0r , [S1—3, St—2, S1—1, 8¢)01 , L{t + 1 =T}

24

TutorBot Dimension Description

Pre-test € {0, 1, ..., 8}, Anxiety-level € [—1, 0]

State 4 Thinking € [0, 1]+, Pre-termination € {0, 1}
Action 1 0 = Encourage, 1 = Guided Prompt, 2 = Hint
Reward 1 0 for all steps if not last step

Table A.7: MDP specification for TutorBot.

The reward is always O at all steps except for the final step. We use x to denote anxiety and A to
denote thinking. Note that anxiety is always negative. We calculate the final reward as follows:

Ry = 1{U[0,1] < p} * Timprov + (1 — L{U[0,1] < p}) * Tbase,p = + h
Under this simulator, a student will improve a small amount even if the chatbot fails to teach optimally.
Timprov ™~ N(,uimprow 1)7 Tbase ™~ N(Nbasea 04)
We provide the full simulator code in the GitHub repo.

A.16 Sepsis-POMDP and Sepsis-MDP Experiment Details

Our algorithm-hyperparameter search is trying to be as realistic as possible to the setting of offline
RL practitioners. We search over hyperparameters that could potentially have a strong influence on
the downstream performance. Since this is an offline RL setting, we are particularly interested in

searching over hyperparameters that have an influence on how pessimistic/conservative the algorithm
should be.

Alde1 BCQ

Batch Constrained Q-Learning (BCQ) is a commonly used algorithm for batch (offline) reinforcement
learning (Fujimoto et al., 2019). We search over the following hyperparameters:

Hyperparameter
BCQ Range
Actor/Critic
network [32, 64, 128]
dimension
Training
Epochs [15, 20, 25]
BCQ
Threshold § 01> 03, 0.5]

Table A.8: BCQ Hyperparams for Spesis-POMDP N=200, 1000. Sepsis-MDP N=200. TutorBot
N=200.

BCQ threshold determines if the Q-network can take the max over action to update its value using
(s, a) — it can only update Q-function using (s, a) if p(s) > ¢ and 7(a|s) > 0. The higher 6 (BCQ
threshold) is, the less data BCQ can learn from. § determines whether (s',a’) € B.

Q(s,a) +(1 — @)Q(s,a)
talr+y max Q'(s.a) ®)
a’s.t.(s’,a’)EB
We search through the cross-product of these, in total 27 combinations.

For Sepsis-POMDP N=5000, we realize the network size is too small to fit a relatively large dataset
of 5000 patients. So we additionally search over Table A.9. The actor/critic network uses a 2-layer
fully connected network. This resulted in 6 additional combinations for BCQ in Sepsis-POMDP
N=5000.

25

Hyperparameter

BeQ Range
Actor/Critic
network [256, 256], [512,512], [1024,1024]
dimension
Training
Epochs [25]
VAE Latent
Dim [512]
BCQ
Threshold & [0.3,0.4]

Table A.9: BCQ Hyperparams for Spesis-POMDP N=5000.

A.162 MBS-QI

The MBS-QI algorithm is very similar to BCQ, but MBS-QI also clips the states (Liu et al., 2020).
We searched through similar hyperparameters as BCQ.

Hyperparameter
MBS-QI Range
Actor/Critic
network [32, 64, 128]
dimension
Training
Epochs [15, 20, 25]
BCQ
Threshold § [0.1,0.3,0.5]
Beta 3 [1.0, 2.0, 4.0]

Table A.10: MBS-QI Hyperparams for Spesis-POMDP N=200, 1000. Sepsis-MDP N=200. TutorBot
N=200.

The beta (/3) hyperparameter in MBS-QI is a threshold for the VAE model’s reconstruction loss.
When the reconstruction loss of the next state is larger than beta, MBS-QI will not apply the Q
function on this next state to compute future reward (to avoid function approximation over unfamiliar
state space).

(s a;,0) = 1(z

(Th)(s,0) : EvfmacCo f(s',a))

I
<
—
\‘Cn
S
+
2

We search through the cross-product of these, in total 81 combinations. Similar to BCQ situation, we
realize the network size is too small to fit a relatively large dataset of Sepsis-POMDP N=5000. So we
additionally search over Table A.11. The actor/critic network uses a 2-layer fully connected network.
This results in 18 additional combinations for MBS-QI in Sepsis-POMDP N=5000.

A.16.3 MOPO

We also experiment with Model-based Offline Policy Optimization (MOPO) (Yu et al., 2020). The
original MOPO paper only experimented on Mujoco-based locomotion continuous control tasks. We
want to experiment with whether MOPO can work well in environments like the Sepsis-POMDP
simulator, which is not only a healthcare domain but also partially observable with a discrete state
and action space. We do not expect MOPO to do well. We re-implemented two versions of MOPO

26

Hyperparameter

MBS-QI Range
Actor/Critic
network [256, 256], [512,512], [1024,1024]
dimension
Training
Epochs [25]
VAE Latent
Dim [512]
BCQ
Threshold & 0.3, 0.4]
Beta ¢ [1.0, 2.0, 4.0]

Table A.11: MBS-QI Hyperparams for Spesis-POMDP N=5000.

with Tensorflow 2.0 and PyTorch, and used the PyTorch version to run our experiments. Our
implementation of MOPO matches the original’s performance in a toy environment.

MOPO is fairly slow to run — because it needs first to train a model to approximate the original
environment, and then sample from this model to train an RL algorithm. We did not evaluate it for
Sepsis-POMDP N=5000.

Hyperparameter
MOPO wharay
Actor/Critic
dlfgggflgn [32, 32], [64, 64], [128, 128]
dim
Hontions [1000, 2000, 3000}
MOPO
Lambda \ [0,0.1,0.2]
Number of
Ensembles [3,4.5]

Table A.12: MOPO hyperparameters for Spesis-POMDP N=200, 1000.

Number of ensembles refers to MOPO Algorithm 2, which trains an ensemble of N probabilistic
dynamics on batch data. N should be adjusted according to the dataset size. Each dynamics model is
trained on % of the data during each epoch.

ﬁ(S/,T|S,0,) :N(ﬂi(&a)azi(sva’)) (10)
MOPO X hyperparameter controls how small we want the reward to be, adjusting for state-action pair

uncertainty. Generally, the more uncertain we are about (s, a), the more we should ignore the reward
that’s outputted by the learned MDP model. Its use is also described in Algorithm 2:

7(s,0) = r(s,a) — Amax [|%i(s,0)] | (1n)

We search through the cross-product of these, in total 81 combinations.

In our initial experiments, MOPO does not seem to perform well in a tabular setting where both
state and action are discrete. Therefore, we simplified the idea of MOPO to introduce Pessimistic
Ensemble MDP (P-MDP).

27

Al64 P-MDP

As noted in the previous section, inspired by MOPO and MoREL (Kidambi et al., 2020), we develop
a tabular version of MOPO. We instantiate /N tabular MDP models. For each epoch, each MDP
model only updates on 1/N portion of the data. During policy learning time, for each timestep, we
randomly sample 1 of the N MDP for the next state and reward; and use Hoeffding bound to compute
a pessimistic reward, similar to MOPQ’s variance penalty on reward:

Let N (s, a) be the number of times (s, a) is observed in the dataset:
2log(1/6)
N(s,a) (12)

7(s,a) = min(max(r — e, —1), 1)

e= [«

In the last step we bound the reward to (-1, 1) for the Sepsis setting — but it can be changed to apply
to any kind of reward range. We note that Hoeffding bound is often loose when N (s, a) is small,
therefore, might make the reward too small to learn any good policy. However, empirically, we
observe that in the Sepsis-POMDP, P-MDP is often the best-performing algorithm. We additional
add a temperature hyperparameter «, that changes the peakness/flatness of the softmax distribution of
the learned policy:

P-MDP Hyperparameter
Range
ITralqlng (1000, 5000, 10000]
terations
Penalty
Coefficient 3 [0,0.1,0.5]
Number of
Ensembles [3,5,7]

Temperature o [0.05, 0.1, 0.2]

Table A.13: P-MDP Hyperparams for Spesis-POMDP N=200, 1000.

Not surprisingly, since planning algorithms (such as Value Iteration or Policy Iteration) need to
enumerate through the entire state space, we find it too slow to train a policy in Sepsis-MDP domain,
because Sepsis-POMDP has 144 unique states, yet Sepsis-MDP has 1440 unique states (glucose level
has 5 unique states and diabetes status has 2 unique states). TutorBot and Robomimic both have
continuous state space, therefore are not suitable for our P-MDP algorithm without binning.

We search through the cross-product of these, in total 81 combinations.

For Sepsis-POMDP N=5000, we realize we can increase the number of MDPs and increase training
iterations to fit a relatively large dataset of 5000 patients. So we additionally search over Table A.14.
This results in 16 additional combinations for P-MDP in Sepsis-POMDP N=5000.

P-MDP HYPelgpmameter
ange
ITram'mg [20000, 40000]
erations
Penalty
Coefficient 3 [0.05, 0.1]
Number of
Ensembles [15,25]

Temperature « [0.01, 0.05]

Table A.14: P-MDP Hyperparams for Spesis-POMDP N=5000.

28

Al6.5 BC

Behavior Cloning (BC) is a type of imitation learning method where the policy is learned from a
data set by training a policy to clone the actions in the data set. It can serve as a great initialization
strategy for other direct policy search methods which we will discuss shortly.

One pessimistic hyperparameter we can introduce to behavior cloning is similar in spirit to BCQ
and MBS-QI, we can train BC policy only on actions that the behavior policy has a high-enough
probability to take, optimizing the following objective:

¢ =mp(als) >«

. 13
arg min (s o)..p |7 (s) — ¢ o m(al3)| (19

We refer to « as the “safety-threshold”. We search through the cross-product of these, in total 27
combinations.

Hyperparameter

BC Range

Policy network [32, 32], [64, 64], [128, 128]

dimension
Training
Epochs [15, 20, 25]
Safety
Threshold o [0, 0.01, 0.05]

Table A.15: BC Hyperparams for Spesis-POMDP N=200, 1000, 5000. Sepsis-MDP N=200. TutorBot
N=200.

A.d6.6 POIS

Policy Optimization via Importance Sampling (Metelli et al., 2018) uses an importance sampling
estimator as an end-to-end differentiable objective to directly optimize the parameters of a policy.
In our experiment, we refer to this as the “PG” (policy gradient) method. Similar to BC method,
we can set a safety threshold « that zeros out any behavior probability of an action that’s not higher
than «, and then re-normalizes the probabilities of other actions. Metelli et al. (2018) also introduces
another penalty hyperparameter A to control the effective sample size (ESS) penalty. ESS measures

the Renyi-divergence between 7, and 7. Let V be the differentiable importance sampling estimator —
we write the optimization objective similar to Futoma et al. (2020), but without the generative model:

N A
T (Dirsin) = V(70 Purain) = g5 (14)

0= arg mgaX j(Dtmin)

We search through the following hyperparameters in Table A.16. There are 81 combinations in total.

A.16.7 BC+POIS

BC + POIS is a method that first finds a policy using BC as an initialization strategy to make sure
that the policy stayed close (at first) to the behavior policy. This is particularly useful for neural
network-based policy classes, as a form of pre-training using behavior cloning objective. We use the
same set of hyperparameters displayed in Table A.16, resulting in 81 combinations in total.

A.16.8 BC+mini-POIS

In both Metelli et al. (2018) and Futoma et al. (2020), the loss is computed on the whole dataset
Dtrain, Which makes sense — importance sampling computes the expected reward (which requires
averaging over many trajectories to have an estimation with low variance). However, inspired by
the success of randomized optimization algorithms such as mini-batch stochastic gradient descent

29

Hyperparameter

BC Range

Policy network

dimension [32, 32], [64, 64], [128, 128]

Training

Epochs [15, 20, 25]

Safety
Threshold o

ESS
Penalty A

[0, 0.01, 0.05]

[0, 0.01, 0.05]

Table A.16: POIS, BC+POIS, BC+mini-POIS Hyperparams for Spesis-POMDP N=200, 1000, 5000.
Sepsis-MDP N=200. TutorBot N=200.

(SGD), we decided to attempt a version of BC + POIS with V' over a small batch of trajectories
instead of over the entire dataset. Our batch size is 4 (4 trajectories/patients) for Sepsis-POMDP
N=200 and 1000, which is very small. Howeyver, this strategy seems to be quite successful, resulting
in learning high-performing policies competitive with other more principled methods. This can be
seen in Figure A.2 (“BCMINIPG”).

We leave the exploration of why this is particularly effective to future work, and hope others who
want to try POIS style method to include our variant in their experiment. We use the same set of
hyperparameters displayed in Table A.16, resulting in 81 combinations in total.

A.17 TutorBot Experiment Details

The details of this environment is shown in the code file in the supplementary material. We trained
BC+POIS, POIS, and BC+mini-POIS on this domain.

A.18 Robomimic Experiment Details

We refer the reader to Mandlekar et al. (2021) for a full review of the offline RL algorithms used
in our experiment. For Robomimic, we include the range of hyperparameters we have considered
below:

* BC:
— Actor NN dimension: [300,400], [1024,1024]
— Training epochs: 600, 2000
— GMM actions: 5, 25
BCRNN:
— RNN dimension: [100], [400]
— Training epochs: 600, 2000
— GMM actions: 5, 25
* BCQ:
— Critic NN size: [300,400], [1024,1024]
— Training epochs: 600, 2000
— Action samples: [10,100], [100,1000]
* CQL:
— Critic NN size: [300,400], [1024,1024]
— Training epochs: 600, 2000
— Lagrange threshold: 5, 25
IRIS:
— Critic NN size: [300,400], [1024,1024]
— Training epochs: 600, 2000
— LR critic: 0.001, 0.0001

30

A.19 D4RL-Hopper Experiment Details
For the D4RL experiments, we include the range of hyperparameters we have considered below:

* BCQ:
— Policy NN size: [512,512], [64,64]
— LR policy: 0.001, 0.0001
* CQL:
— Policy NN size: [256,256,256], [64,64,64]
— LR policy: 0.001, 0.0001
* AWAC:

— Policy NN size: [256,256,256,256], [64,64,64,64]
— LR policy: 0.001, 0.0001

For BVFT Strategy 1 m x FQE, we use the optimal FQE hyperparameter on all hyperparameters of
BCQ, CQL and AWAC. For BVFT Strategy 2 m + FQE, we use 4 FQE hyperparameters but only
with 4 hyperparameters of BCQ. For RRS and CV, we use the optimal FQE hyperparameter on 4
hyperparameters of BCQ as well.

A.20 Computing Resources

For the overall experimental study in this paper, an internal cluster consisting of 2 nodes with a total
of 112 CPUs and 16 GPUs was used.

A.21 Additional Offline RL Sensitivity Study
A.21.1 Sensitivity to data splitting: One-Split OPE

Figure A.1 shows that procedure produces policies with drastically different estimated, and true,
performances subject to randomness in data selection process. Because training and validation set
randomness are directly conflated, it becomes difficult to accurately select a better AH pair (and its
associated higher-performing policy) based on a single train/validation set partition.

Sepsis-POMDP N=1000 Sepsis-MDP N=200 TutorBot N=200 Robomimic Can-Paired N=200

=3 True Reward N =3 True Reward = True Reward 17,5 =1 True Reward
121 o T wisEsimae 0 == Wis Esimate 19 == WIS Esimate =1 FQE Estimate

Percent
o
-
5
°

| 0 A + 0.0
=100 -75 =50 =25 o 25 50 -100 =50 o 50 -1.00 -0.75-0.50 —-0.25 0.00 0.25 0.50 0.75 -1) 1 2 3
Reward Reward Reward Reward

Figure A.1: We show that policies learned from offline RL algorithms are sensitive to the variation of
training and validation dataset: an algorithm-hyperparameter (AH) pair can obtain wildly different
policies based on which portion of the data they were trained on. We obtained 5400 policies from
540 AH combinations on Sepsis-POMDP (N=1000) domain. The variation is not just in terms of the
policy’s true performance in the real environment, but also in terms of OPE estimations. Note that
FQE estimate on Robomimic exceeded the range of possible achievable rewards (between 0 and 1).
The true reward is calculated by evaluating the policy in the real environment.

A.21.2 Sensitivity to hyperparameters

In Figure A.2, we show that offline RL algorithms are sensitive to the choice of hyperparameters. In
the Sepsis-POMDP N=1000 task and the Robomimic Can-Paired N=200 task, all popular offline RL
algorithms show a wide range of performance differences even when trained on a fixed partition of
the dataset.

31

Percent

Sepsis-POMDP N=1000

Algorithm
BC

BCPG
BCQ
MBSQI
MDP
MOPO
PG

popoeana

o]
-80 —60 —-40 -20 0
True Reward

BCMINIPG

20

15

Percent

Robomimic Can-Paired N=200

Algorithm
BC
BCQ
BCRNN
cQL
IRIS

iy

01 02 03 04 05 06 07

True Reward

Figure A.2: Sensitivity of offline RL algorithms due to the choice of hyperparameters.

32

	Introduction
	Related work
	Background and Problem Setting
	The Challenge of Offline RL Ai Selection
	Repeated Experiments for Robust Hyperparameter Evaluation in Offline RL

	SSR: Repeated Random Sampling for Ai Selection and Deployment
	Experiments
	Task/Domains
	Baselines
	Training and Evaluation

	Results
	Discussion and Conclusion
	Acknowledgment
	Appendix
	Prelude Experiment
	Connection between Leave-p-Out CV and RRS
	Proof of Theorem 1
	SSR pseudo-code
	Code
	Experiment Detail Summary
	Computational Complexity
	Sensitivity to OPE Methods
	Robustness of SSR-RRS
	Is FQE biased towards FQI algorithms?
	Additional Discussions
	Additional Experiment
	Figure Generation Procedure
	Domain Descriptions
	TutorBot Domain
	Sepsis-POMDP and Sepsis-MDP Experiment Details
	BCQ
	MBS-QI
	MOPO
	P-MDP
	BC
	POIS
	BC+POIS
	BC+mini-POIS

	TutorBot Experiment Details
	Robomimic Experiment Details
	D4RL-Hopper Experiment Details
	Computing Resources
	Additional Offline RL Sensitivity Study
	Sensitivity to data splitting: One-Split OPE
	Sensitivity to hyperparameters

