Adversarially Guided Actor-Critic

Yannis Flet-Berliac^{*1,2}, based on work with: Johan Ferret^{*1,2,3}, Olivier Pietquin³, Philippe Preux^{1,2}, Matthieu Geist³

¹Inria, SequeL team ²Univ. Lille, CRIStAL, CNRS ³Google Research, Brain team *Equal contribution

DeepMind Reading Group

February 12, 2021

Agenda

- Policy Gradients (PG) and Actor-Critic (AC) methods
 - Contextualization
 - Critics in deep PG algorithms
- Problem: popular AC methods fail ...
 - ... where efficient exploration is a bottleneck
 - ... to generalize correctly [Song et al., 2020, Cobbe et al., 2020]
- AGAC: an adversary to make the agent conservatively diversified
 - Adding an adversary network as a third component to the AC framework
 - Building motivation from a PI point of view
- AGAC: how well does it work?
 - Adversarially-based exploration: VizDoom
 - Hard-exploration tasks with partially-observable environments
 - Investigating trajectory coverage and strategy diversity
- Conclusion and perspectives

Reinforcement Learning

Environment (Markov Decision Process):

- State $s \in \mathcal{S}$, action $a \in \mathcal{A}$
- Reward function: r(s, a), transition probabilities: P(s'|s, a)

Agent:

• Stochastic policy $\pi_{\theta}(a|s)$ with parameter θ

An agent in state s_t interacts with an environment by sampling action $a_t \sim \pi_{\theta}(\cdot|s_t)$, receives reward r_t and transitions to a new state s_{t+1} .

Reinforcement Learning

Environment (Markov Decision Process):

- State $s \in \mathcal{S}$, action $a \in \mathcal{A}$
- Reward function: r(s, a), transition probabilities: P(s'|s, a)

Agent:

• Stochastic policy $\pi_{\theta}(a|s)$ with parameter θ

An agent in state s_t interacts with an environment by sampling action $a_t \sim \pi_{\theta}(\cdot|s_t)$, receives reward r_t and transitions to a new state s_{t+1} .

Goal: Find π that maximizes

$$J(\pi_{\theta}) \triangleq \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right]$$

with $\gamma \in [0, 1)$, $s_{t+1} \sim P(\cdot | s_t, a_t)$, $a_t \sim \pi_{\theta}(\cdot | s_t)$ and trajectory τ .

Policy gradient algorithms try to solve the optimization problem

$$\max_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right]$$

by taking stochastic gradient ascent on the policy parameters $\boldsymbol{\theta},$ using the policy gradient

$$\nabla_{\theta} J = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) Q^{\pi_{\theta}}(s_t, a_t) \right]$$

with $Q^{\pi_{\theta}}(s, a) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) | s_{0} = s, a_{0} = a \right].$

Intuition: make the good actions more probable.

It is possible to obtain an unbiased estimate of the policy gradient from empirical trajectories \ldots

... But the corresponding variance can be extremely high.

It is possible to obtain an unbiased estimate of the policy gradient from empirical trajectories \ldots

... But the corresponding variance can be extremely high.

Subtracting a baseline from the value function in the policy gradient can be very beneficial in reducing variance without damaging the bias [Williams, 1992, Weaver and Tao, 2001].

It is possible to obtain an unbiased estimate of the policy gradient from empirical trajectories \ldots

... But the corresponding variance can be extremely high.

Subtracting a baseline from the value function in the policy gradient can be very beneficial in reducing variance without damaging the bias [Williams, 1992, Weaver and Tao, 2001].

In practice, if we denote \hat{X} the empirical estimate of X, the policy gradient becomes

$$abla_ heta J = \mathbb{E}_{ au \sim \pi_ heta} \left[\sum_{t=0}^\infty
abla_ heta \log \pi_ heta(a_t|s_t) \hat{A}^{\pi_ heta}(s_t,a_t)
ight].$$

with $\hat{A}^{\pi_{\theta}}(s, a) = \hat{Q}^{\pi_{\theta}}(s, a) - \hat{V}^{\pi_{\theta}}(s)$ the advantage estimate which quantifies how an action *a* is better than the average action in state *s*.

Critics in Deep Policy Gradients

 $\hat{V}^{\pi_{ heta}}$ is learned using a function estimator.

Let $V_{\phi} : S \to \mathbb{R}$ (ϕ its parameter) be an estimator of the empirical return $\hat{V}^{\pi_{\theta}}$. V_{ϕ} is traditionally learned through minimizing the MSE against $\hat{V}^{\pi_{\theta}}$. The critic minimizes:

$$\mathcal{L}_{\mathsf{V}} = \mathbb{E}_{s}\left[\left(V_{\phi}(s) - \hat{V}^{\pi_{ heta_{\mathsf{old}}}}(s)
ight)^{2}
ight],$$

where the states s are collected under policy $\pi_{\theta_{old}}$ at the previous iteration.

 $\rightarrow V_{\phi}$ is called **the critic**.

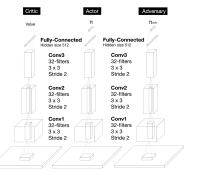
Setting applicable to e.g. PPO [Schulman et al., 2017].

In AGAC, the **adversary policy** π_{adv} mimics the actor policy π :

$$\mathcal{L}_{\mathsf{adv}} = \mathbb{E}_{s}\left[D_{\mathrm{KL}}(\pi(\cdot|s,\theta_{\mathsf{old}})\|\pi_{\mathsf{adv}}(\cdot|s,\psi))\right]$$

with ψ the parameters of $\pi_{\rm adv}$ and $\theta_{\rm old}$ that of π at the previous iteration.

 \rightarrow The **adversary** tries to predict the actions of the actor.



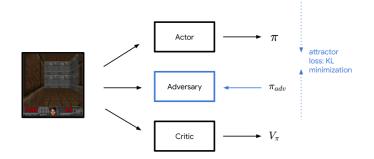


Figure: The adversary minimizes the discrepancy between its action distribution π_{adv} and the distribution induced by the policy π .

AGAC modifies the AC advantage and value functions:

$$\begin{aligned} A_t^{\text{AGAC}} &= A_t + c \left(\log \pi(a_t | s_t, \theta_{\text{old}}) - \log \pi_{\text{adv}}(a_t | s_t, \psi_{\text{old}}) \right) \\ \mathcal{L}_V &= \mathbb{E}_s \left[\left(V_{\phi}(s) - \left(\hat{V}^{\pi_{\theta_{\text{old}}}}(s) + c D_{\text{KL}} \left(\pi(\cdot | s, \theta_{\text{old}}) \| \pi_{\text{adv}}(\cdot | s, \psi_{\text{old}}) \right) \right) \right)^2 \right] \end{aligned}$$

with c a varying hyperparameter.

 \rightarrow The **actor** (a) maximizes the sum of expected returns; (b) counteracts the adversary's predictions.

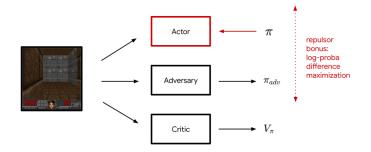


Figure: The actor counteracts the adversary's predictions by maximizing the discrepancy between π and π_{adv} (in addition to finding the optimal actions to maximize the sum of expected returns).

AGAC: final objective function

AGAC minimizes the following loss:

$$\mathcal{L}_{AGAC} = \mathcal{L}_{PG} + \beta_V \mathcal{L}_V + \beta_{adv} \mathcal{L}_{adv}$$

Building motivation

In the PI scheme, AGAC would modify the action-value as:

$$Q_{\pi_k}^{ t{AGAC}} = Q_{\pi_k} + c \left(\log \pi_k - \log \pi_{ t{adv}}
ight)$$

with π_k the policy at iteration k.

Incorporating the entropic penalty, the new policy π_{k+1} verifies:

$$\pi_{k+1} = \operatorname*{argmax}_{\pi} \mathcal{J}_{\mathsf{PI}}(\pi) = \operatorname*{argmax}_{\pi} \mathbb{E}_{s} \mathbb{E}_{a \sim \pi(\cdot | s)}[Q^{\mathtt{AGAC}}_{\pi_{k}}(s, a) - \alpha \log \pi(a | s)].$$

Idea: we can rewrite this objective

$$\mathcal{J}_{\mathsf{PI}}(\pi) = \mathbb{E}_{s} \Big[\mathbb{E}_{a \sim \pi(\cdot|s)} [Q_{\pi_{k}}(s, a)] \underbrace{-c D_{\mathrm{KL}}(\pi(\cdot|s)||\pi_{k}(\cdot|s))}_{\pi_{k} \text{ is attractive}} \\ \underbrace{+c D_{\mathrm{KL}}(\pi(\cdot|s)||\pi_{\mathsf{adv}}(\cdot|s))}_{\pi_{\mathsf{adv}} \text{ is repulsive}} \underbrace{+\alpha \mathcal{H}(\pi(\cdot|s))}_{\text{enforces stochastic policies}} \Big]$$

Building motivation

$$\mathcal{J}_{\mathsf{PI}}(\pi) = \mathbb{E}_{s} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} [Q_{\pi_{k}}(s,a)] \underbrace{-c D_{\mathrm{KL}}(\pi(\cdot|s)||\pi_{k}(\cdot|s))}_{\pi_{k} \text{ is attractive}} + c D_{\mathrm{KL}}(\pi(\cdot|s)||\pi_{\mathsf{adv}}(\cdot|s)) \underbrace{+\alpha \mathcal{H}(\pi(\cdot|s))}_{\mathsf{enforces stochastic policies}} \right]$$

\rightarrow AGAC finds a policy that:

(a) maximizes Q-values;
(b) remains close to the current policy;
(c) remains far from a mixture of previous policies (*i.e.*, π_{k-1}, π_{k-2}, ...).

The actor's policy is *conservatively diversified*.

Empirical results: adversarially-based exploration

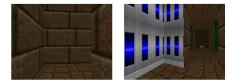


Figure: Frames from the 3-D navigation task VizdoomMyWayHome.

Nb. of Timesteps	2M	4M	6M	8M	10M
AGAC	0.74 ± 0.05	0.96 ± 0.001	0.96 ± 0.001	0.97 ± 0.001	0.97 ± 0.001
RIDE	0.	0.	0.95 ± 0.001	0.97 ± 0.001	0.97 ± 0.001
ICM	0.	0.	0.95 ± 0.001	0.97 ± 0.001	0.97 ± 0.001
AMIGo	0.	0.	0.	0.	0.
RND	0.	0.	0.	0.	0.
Count	0.	0.	0.	0.	0.

Table 1: Average return in VizDoom at different timesteps.

Importantly, other algorithms benefit from **count-based exploration**.

Empirical results: procedurally-generated partially-observable environments

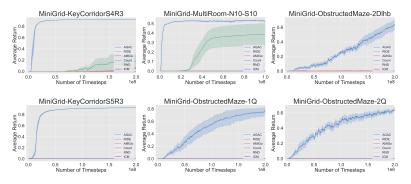


Figure: Performance evaluation of AGAC on MiniGrid tasks.



Empirical results: some insights

Two main arguments to explain why AGAC is successful:

- the exploration bonus does not dissipate compared to most other methods (see Fig. 9 [Flet-Berliac et al., 2021]);
- AGAC does not make assumptions about the environment dynamics (*e.g.* RIDE [Raileanu and Rocktäschel, 2019] assume changes in the environment following an action).

Empirical results: visualizing exploration coverage

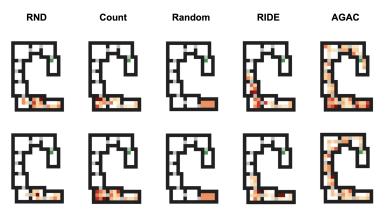


Figure: State visitation heatmaps for different methods trained in a singleton environment (top row) and procedurally-generated environments (bottom row) without extrinsic reward for 10M timesteps in the *MultiRoomN10S6* task.

Conclusion and perspectives

This paper ...:

introduces a modification of the traditional actor-critic framework which
 (a) is motivated from a theoretical standpoint using the (simplified) point of view of PI (b) produces considerable gains in performance

 highlights the benefits of a more extended investigation of count-less methods for hard-exploration and procedurally-generated tasks

• is not a claim that AGAC is the best version of the proposed "adversarially guided AC" formulation *i.e.* many components could be improved (better NN architecture, Polyak averaging, etc.)

• could be followed-up with further analysis of the adversarial bonus (although our training stability study indicates that c is + sensitive than other HP, why not try with a dynamic c)

o could be extended to stochastic environments

Questions?

Flet-Berliac, Y., Ferret, J., Pietquin, O., Preux, P., and Geist, M. (2021). Adversarially guided actor-critic. In *International Conference on Learning Representations*.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. (2020). Leveraging procedural generation to benchmark reinforcement learning. In *International Conference on Machine Learning*.

Puterman, M. (1994). Markov Decision Processes. John Wiley & Sons.

Raileanu, R. and Rocktaschel, T. (2019). Ride: Rewarding impact-driven exploration for procedurally-generated environments. In *International Conference on Learning Representations*.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). **Proximal policy optimization algorithms**. *arXiv preprint arXiv:1707.06347*.

Song, X., Jiang, Y., Du, Y., and Neyshabur, B. (2020). **Observational overfitting in** reinforcement learning. In *International Conference on Learning Representations*.

Weaver, L. and Tao, N. (2001). The optimal reward baseline for gradient-based reinforcement learning. In Advances in Neural Information Processing Systems.

More results: visualizing exploration coverage

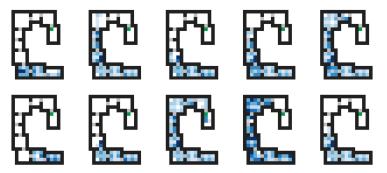


Figure: State visitation heatmaps of the last ten episodes of an agent trained in procedurally- generated environments without extrinsic reward for 10M timesteps in the *MultiRoomN10S6* task. The agent is continuously engaging in new strategies.

More results: visualizing exploration coverage

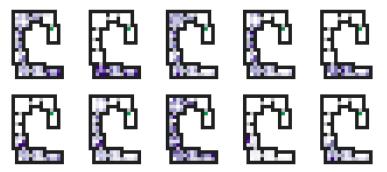


Figure: State visitation heatmaps of the last ten episodes of an agent trained in a singleton environment with no extrinsic reward 10M timesteps in the *MultiRoomN10S6* task. The agent is continuously engaging into new strategies.

More results: reward free

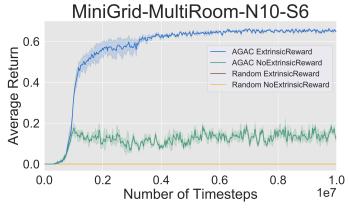
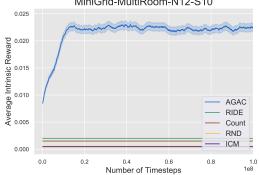


Figure: Average return on N10S6 with and without extrinsic reward.

More results: intrinsic reward



MiniGrid-MultiRoom-N12-S10

Figure: Average intrinsic reward for different methods trained in MultiRoomN12S10.

More results: training stability

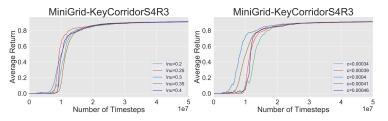


Figure: Sensitivity analysis of AGAC in KeyCorridorS4R3.

More results: extremely hard-exploration tasks

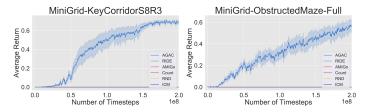


Figure: Performance evaluation of AGAC compared to RIDE, AMIGo, Count, RND and ICM on extremely hard-exploration problems.