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Agenda

Policy Gradients (PG) and Actor-Critic (AC) methods

I Contextualization

I Critics in deep PG algorithms

Problem: popular AC methods fail ...

I ... where e�cient exploration is a bottleneck

I ... to generalize correctly [Song et al., 2020, Cobbe et al., 2020]

AGAC: an adversary to make the agent conservatively diversified
I Adding an adversary network as a third component to the AC framework

I Building motivation from a PI point of view

AGAC: how well does it work?

I Adversarially-based exploration: VizDoom

I Hard-exploration tasks with partially-observable environments

I Investigating trajectory coverage and strategy diversity

Conclusion and perspectives
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Reinforcement Learning
Environment (Markov Decision Process):

State s 2 S, action a 2 A

Reward function: r(s, a) , transition probabilities: P(s 0|s, a)

Agent:

Stochastic policy ⇡✓(a|s) with parameter ✓

An agent in state st interacts with an environment by sampling action

at ⇠ ⇡✓(·|st), receives reward rt and transitions to a new state st+1.

Goal: Find ⇡ that maximizes

J(⇡✓) , E⌧⇠⇡✓

" 1X

t=0
�tr (st , at)

#

with � 2 [0, 1), st+1 ⇠ P(·|st , at), at ⇠ ⇡✓(·|st) and trajectory ⌧ .
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Policy Gradients

Policy gradient algorithms try to solve the optimization problem

max
✓

J(⇡✓) = E⌧⇠⇡✓

" 1X

t=0
�tr (st , at)

#

by taking stochastic gradient ascent on the policy parameters ✓, using the

policy gradient

r✓J = E⌧⇠⇡✓

" 1X

t=0
r✓ log ⇡✓(at |st)Q⇡✓ (st , at)

#

with Q⇡✓ (s, a) = E⌧⇠⇡✓ [
P1

t=0 �
tr (st , at) |s0 = s, a0 = a].

Intuition: make the good actions more probable.
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Policy Gradients
It is possible to obtain an unbiased estimate of the policy gradient from

empirical trajectories ...

... But the corresponding variance can be extremely high.

Subtracting a baseline from the value function in the policy gradi-

ent can be very beneficial in reducing variance without damaging the

bias [Williams, 1992, Weaver and Tao, 2001].

In practice, if we denote X̂ the empirical estimate of X , the policy gradient

becomes

r✓J = E⌧⇠⇡✓

" 1X

t=0
r✓ log ⇡✓(at |st)Â⇡✓ (st , at)

#
,

with Â⇡✓ (s, a) = Q̂⇡✓ (s, a)� V̂ ⇡✓ (s) the advantage estimate which

quantifies how an action a is better than the average action in state s.
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with Â⇡✓ (s, a) = Q̂⇡✓ (s, a)� V̂ ⇡✓ (s) the advantage estimate which

quantifies how an action a is better than the average action in state s.

Adversarially Guided Actor-Critic 5



Policy Gradients
It is possible to obtain an unbiased estimate of the policy gradient from

empirical trajectories ...

... But the corresponding variance can be extremely high.

Subtracting a baseline from the value function in the policy gradi-

ent can be very beneficial in reducing variance without damaging the

bias [Williams, 1992, Weaver and Tao, 2001].

In practice, if we denote X̂ the empirical estimate of X , the policy gradient

becomes

r✓J = E⌧⇠⇡✓

" 1X

t=0
r✓ log ⇡✓(at |st)Â⇡✓ (st , at)
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Critics in Deep Policy Gradients
V̂ ⇡✓ is learned using a function estimator.

Let V� : S ! R (� its parameter) be an estimator of the empirical return

V̂ ⇡✓ . V� is traditionally learned through minimizing the MSE against V̂ ⇡✓ .

The critic minimizes:

LV = Es
h�

V�(s)� V̂ ⇡✓old (s)
�2
i
,

where the states s are collected under policy ⇡✓old at the previous iteration.

! V� is called the critic.

Setting applicable to e.g. PPO [Schulman et al., 2017].
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AGAC: a new protagonist to the actor-critic setting

In AGAC, the adversary policy ⇡adv mimics the actor policy ⇡:

Ladv = Es [DKL(⇡(·|s, ✓old)k⇡adv(·|s, ))]

with  the parameters of ⇡adv and ✓old that of ⇡ at the previous iteration.

! The adversary tries to predict

the actions of the actor.
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AGAC: a new protagonist to the actor-critic setting

Figure: The adversary minimizes the discrepancy between its action distribution ⇡adv
and the distribution induced by the policy ⇡.
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AGAC: a new protagonist to the actor-critic setting

AGAC modifies the AC advantage and value functions :

AAGAC
t = At + c

⇣
log ⇡(at |st , ✓old)� log ⇡adv(at |st , old)

⌘

LV = Es

⇣
V�(s)�

⇣
V̂ ⇡✓old (s) + c DKL (⇡(·|s, ✓old)k⇡adv(·|s, old))

⌘⌘2
�

with c a varying hyperparameter.

! The actor (a) maximizes the sum of expected returns;

(b) counteracts the adversary’s predictions.
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AGAC: a new protagonist to the actor-critic setting

Figure: The actor counteracts the adversary’s predictions by maximizing the

discrepancy between ⇡ and ⇡adv (in addition to finding the optimal actions to maximize
the sum of expected returns).
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AGAC: final objective function

AGAC minimizes the following loss:

LAGAC = LPG + �VLV +�advLadv
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Building motivation
In the PI scheme, AGAC would modify the action-value as:

QAGAC
⇡k = Q⇡k + c (log ⇡k � log ⇡adv)

with ⇡k the policy at iteration k.

Incorporating the entropic penalty, the new policy ⇡k+1 verifies:

⇡k+1 = argmax
⇡

JPI(⇡) = argmax
⇡

EsEa⇠⇡(·|s)[QAGAC
⇡k (s, a)� ↵ log ⇡(a|s)].

Idea: we can rewrite this objective

JPI(⇡) = Es
h
Ea⇠⇡(·|s)[Q⇡k (s, a)] � c DKL(⇡(·|s)||⇡k(·|s))| {z }

⇡k is attractive

+ c DKL(⇡(·|s)||⇡adv(·|s))| {z }
⇡adv is repulsive

+↵H(⇡(·|s))| {z }
enforces stochastic policies

i
.
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+↵H(⇡(·|s))| {z }
enforces stochastic policies

i
.

! AGAC finds a policy that:

(a) maximizes Q-values;

(b) remains close to the current policy;

(c) remains far from a mixture of previous policies (i.e., ⇡k�1, ⇡k�2, . . . ).

The actor’s policy is conservatively diversified .
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Empirical results: adversarially-based exploration

Figure: Frames from the 3-D navigation task VizdoomMyWayHome.

Importantly, other algorithms benefit from count-based exploration.
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Empirical results: procedurally-generated
partially-observable environments

Figure: Performance evaluation of AGAC on MiniGrid tasks.

Here, AGAC also uses episodic state visitation counts.
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Empirical results: some insights

Two main arguments to explain why AGAC is successful:

the exploration bonus does not dissipate compared to most other

methods (see Fig. 9 [Flet-Berliac et al., 2021]);

AGAC does not make assumptions about the environment

dynamics (e.g. RIDE [Raileanu and Rocktäschel, 2019] assume

changes in the environment following an action).
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Empirical results: visualizing exploration coverage

Figure: State visitation heatmaps for di�erent methods trained in a singleton

environment (top row) and procedurally-generated environments (bottom row)

without extrinsic reward for 10M timesteps in the MultiRoomN10S6 task.
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Conclusion and perspectives
This paper ...:

� introduces a modification of the traditional actor-critic framework which

(a) is motivated from a theoretical standpoint using the (simplified) point of

view of PI (b) produces considerable gains in performance

� highlights the

benefits of a more extended investigtion of count-less methods for

hard-exploration and procedurally-generated tasks

� is not a claim that AGAC is the best version of the proposed ”adversarially

guided AC” formulation i.e. many components could be improved (better NN

architecture, Polyak averaging, etc.)

� could be followed-up with further analysis of the adversarial bonus

(although our training stability study indicates that c is + sensitive than

other HP, why not try with a dynamic c)

� could be extended to stochastic environments
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Thank you!

Questions?
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More results: visualizing exploration coverage

Figure: State visitation heatmaps of the last ten episodes of an agent trained in

procedurally- generated environments without extrinsic reward for 10M timesteps in

the MultiRoomN10S6 task. The agent is continuously engaging in new strategies.
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More results: visualizing exploration coverage

Figure: State visitation heatmaps of the last ten episodes of an agent trained in a

singleton environment with no extrinsic reward 10M timesteps in the

MultiRoomN10S6 task. The agent is continuously engaging into new strategies.
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More results: reward free

Figure: Average return on N10S6 with and without extrinsic reward.

Adversarially Guided Actor-Critic 23



More results: intrinsic reward

Figure: Average intrinsic reward for di�erent methods trained in MultiRoomN12S10.
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More results: training stability

Figure: Sensitivity analysis of AGAC in KeyCorridorS4R3.
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More results: extremely hard-exploration tasks

Figure: Performance evaluation of AGAC compared to RIDE, AMIGo, Count, RND

and ICM on extremely hard-exploration problems.
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