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Agenda

m Policy Gradients (PG) and Actor-Critic (AC) methods

» Contextualization
» Critics in deep PG algorithms

Problem: popular AC methods fail ...
» ... where efficient exploration is a bottleneck
> ... to generalize correctly [Song et al., 2020, Cobbe et al., 2020]
m AGAC: an adversary to make the agent conservatively diversified
» Adding an adversary network as a third component to the AC framework
» Building motivation from a Pl point of view
m AGAC: how well does it work?

> Adversarially-based exploration: VizDoom
» Hard-exploration tasks with partially-observable environments
> Investigating trajectory coverage and strategy diversity

Conclusion and perspectives
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Reinforcement Learning

Environment (Markov Decision Process):
m State s € S, action a € A

m Reward function: r(s, a), transition probabilities: P(s’|s, a)

Agent:
m Stochastic policy mg(als) with parameter ¢

An agent in state s; interacts with an environment by sampling action
a; ~ 7g(+|st), receives reward r; and transitions to a new state s;;1.

Adversarially Guided Actor-Critic



Reinforcement Learning

Environment (Markov Decision Process):
m State s € S, action a € A

m Reward function: r(s, a), transition probabilities: P(s’|s, a)

Agent:
m Stochastic policy mg(als) with parameter ¢

An agent in state s; interacts with an environment by sampling action
a; ~ 7g(+|st), receives reward r; and transitions to a new state s;;1.

Goal: Find 7 that maximizes

J(ﬂ'e) = ]ETNTre [thr (St’at)‘|

t=0

with v € [0,1), sty1 ~ P(:|st, at), ar ~ mp(+|s¢) and trajectory 7.
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Policy Gradients

Policy gradient algorithms try to solve the optimization problem

mng(ﬂe Err, [Zv r(se, at ]

by taking stochastic gradient ascent on the policy parameters 6, using the
policy gradient

Vo) =Erom,

t=0

Z Vo log mg(at|s:) Q™ (st, at)l

with Q™ (s,a) = Eror, [Doroo'r (S, ae) |so = s, a0 = a.

Intuition: make the good actions more probable.
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Policy Gradients

It is possible to obtain an unbiased estimate of the policy gradient from
empirical trajectories ...

... But the corresponding variance can be extremely high.
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Policy Gradients

It is possible to obtain an unbiased estimate of the policy gradient from
empirical trajectories ...

... But the corresponding variance can be extremely high.

Subtracting a baseline from the value function in the policy gradi-
ent can be very beneficial in reducing variance without damaging the
bias [Williams, 1992, Weaver and Tao, 2001].
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Policy Gradients

It is possible to obtain an unbiased estimate of the policy gradient from

empirical trajectories ...

... But the corresponding variance can be extremely high.

Subtracting a baseline from the value function in the policy gradi-
ent can be very beneficial in reducing variance without damaging the
bias [Williams, 1992, Weaver and Tao, 2001].

In practice, if we denote X the empirical estimate of X, the policy gradient
becomes
oo
Vod =Errn, ZV@ log o (a¢|st)A™ (st, ar) |
t=0
with A™ (s, a) = Q™ (s, a) — V™(s) the advantage estimate which
quantifies how an action a is better than the average action in state s.
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Critics in Deep Policy Gradients

V™ is learned using a function estimator.
Let V4 : S — R (¢ its parameter) be an estimator of the empirical return

/o . V4 is traditionally learned through minimizing the MSE against Vo,
The critic minimizes:

Ly = Eq [ (Vo(s) = V™4())"]

where the states s are collected under policy g, at the previous iteration.

— V is called the critic.

Setting applicable to e.g. PPO [Schulman et al., 2017].
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AGAC: a new protagonist to the actor-critic setting

In AGAC, the adversary policy 7,4, mimics the actor policy 7:

Lagy = Es [Dkr(7(-[S, Oota) [ Tadv (|5, )]

with 1 the parameters of m,q, and 6,4 that of 7 at the previous iteration.

— The adversary tries to predict n
the actions of the actor. Fuly-connected 7 Fuly-Canngcted

Conv3 Conv3
32-filters 32-filters
3x3 3x3
Stride 2 Stride 2
Conv2 Conv2
32-filters 32-filters
3x3 3x3
Stride 2 Stride 2
Conv1 Conv1
32-filters 32-filters
3x3 3x3
Stride 2 Stride 2
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AGAC: a new protagonist to the actor-critic setting

Actor —_— T

VY attractor
loss: KL

A Minimization

—_— Adversary < Tady

.

Critic  ——

Figure: The adversary minimizes the discrepancy between its action distribution maqy
and the distribution induced by the policy .
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AGAC: a new protagonist to the actor-critic setting

AGAC modifies the AC advantage and value functions:
AR = A +c (Iog 7(atlst, Ooid) — log Wadv(at‘stawold))

£y = Ee | (Volo) — (97%(5) + € D (15, )lmas . vo) )) |

with ¢ a varying hyperparameter.

— The actor (a) maximizes the sum of expected returns;
(b) counteracts the adversary's predictions.
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AGAC: a new protagonist to the actor-critic setting

A
Actor -« T
. repulsor
/ . bonus:
:  log-proba
:  difference
: maximization
_— Adversary —> Tadv :
\ v
Critic Vi

Figure: The actor counteracts the adversary's predictions by maximizing the
discrepancy between m and 7.4y (in addition to finding the optimal actions to maximize
the sum of expected returns).
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AGAC: final objective function

AGAC minimizes the following loss:

Liycac = Lpc + BvLy + BadvLadv

Adversarially Guided Actor-Critic
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Building motivation
In the Pl scheme, AGAC would modify the action-value as:
Qi = Qp, + ¢ (log Tk — log Taay)
with 7, the policy at iteration k.
Incorporating the entropic penalty, the new policy w11 verifies:

i1 = argmax Jpi(m) = argmax EsE, (.15 [@a*(s, a) — alog w(als)].
Idea: we can rewrite this objective

Tor(7) = Bs[Baron 19 Qi (5, 2)] = € D (x([3)lm(-]5))

Tk is attractive

+ ¢ Dxr(n([s)l|maav(-|s))  +aH(n(-]s)) } -

Tradv IS repulsive enforces stochastic policies
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Building motivation

Tor(w) = Es [Esrn(19)[Qry (5. 2] — Dic(m(]5)]mu( [5))

T is attractive

+ e Dru(r(ls)l[maan((1s)  +aM(x(ls) |-

Tadv IS repulsive enforces stochastic policies

— AGAC finds a policy that:

(a) maximizes Q-values;
(b) remains close to the current policy;
(c) remains far from a mixture of previous policies (i.e., mx_1, Tk_2, - - . )

The actor's policy is conservatively diversified.
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Empirical results: adversarially-based exploration

Figure: Frames from the 3-D navigation task VizdoomMyWayHome.

Table 1: Average return in VizDoom at different timesteps.

Nb. of Timesteps 2M 4M 6M 8M 10M
AGAC 0.74+0.05 0.96+0.001 0.96+0.001 0.97+0.001 0.97+0.001
RIDE 0. 0. 0.95+0.001 0.97+0.001 0.97+0.001
ICM 0. 0 0.95+0.001 0.97+0.001 0.97+0.001
AMIGo 0. 0. 0. 0. 0.
RND 0. 0 0. 0. 0.
Count 0. 0 0. 0. 0.

Importantly, other algorithms benefit from count-based exploration.
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Empirical results: procedurally-generated
partially-observable environments
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Figure: Performance evaluation of AGAC on MiniGrid tasks.

Here, AGAC also uses episodic state visitation counts.
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Empirical results: some insights

Two main arguments to explain why AGAC is successful:
m the exploration bonus does not dissipate compared to most other
methods (see Fig. 9 [Flet-Berliac et al., 2021]);

m AGAC does not make assumptions about the environment
dynamics (e.g. RIDE [Raileanu and Rocktéschel, 2019] assume
changes in the environment following an action).

Adversarially Guided Actor-Critic
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Empirical results: visualizing exploration coverage

CERRR
SREES

Figure: State visitation heatmaps for different methods trained in a singleton
environment (top row) and procedurally-generated environments (bottom row)
without extrinsic reward for 10M timesteps in the MultiRoomN10S6 task.
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Conclusion and perspectives

This paper ...:

o introduces a modification of the traditional actor-critic framework which
(a) is motivated from a theoretical standpoint using the (simplified) point of
view of Pl (b) produces considerable gains in performance

o highlights the
benefits of a more extended investigtion of count-less methods for
hard-exploration and procedurally-generated tasks

o is not a claim that AGAC is the best version of the proposed "adversarially
guided AC” formulation i.e. many components could be improved (better NN
architecture, Polyak averaging, etc.)

o could be followed-up with further analysis of the adversarial bonus
(although our training stability study indicates that c is + sensitive than
other HP, why not try with a dynamic c)

o could be extended to stochastic environments
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Thank you!

Questions?

Adversarially Guided Actor-Critic
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More results: visualizing exploration coverage

Figure: State visitation heatmaps of the last ten episodes of an agent trained in
procedurally- generated environments without extrinsic reward for 10M timesteps in
the MultiRoomN10S6 task. The agent is continuously engaging in new strategies.
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More results: visualizing exploration coverage

Figure: State visitation heatmaps of the last ten episodes of an agent trained in a
singleton environment with no extrinsic reward 10M timesteps in the
MultiRoomN10S6 task. The agent is continuously engaging into new strategies.
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More results: reward free
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Figure: Average return on N10S6 with and without extrinsic reward.
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More results: intrinsic reward
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Figure: Average intrinsic reward for different methods trained in MultiRoomN12510.
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More results: training stability
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Figure: Sensitivity analysis of AGAC in KeyCorridorS4R3.
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More results: extremely hard-exploration tasks
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Figure: Performance evaluation of AGAC compared to RIDE, AMIGo, Count, RND
and ICM on extremely hard-exploration problems.
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