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Agenda

Policy Gradients (PG) and Actor-Critic (AC) methods
»> Contextualization
» The use of value functions (Critics) in deep PG algorithms
m Problem: empirical failure of popular AC methods
» Critics do not actually fit V™
> State-action-dependent baselines fail to reduce gradient variance
m AVEC: learning the Critics using Residual Variance

> An alternative Critic (+ building motivation)
> Consistent gradient directions
» Empirical results: continuous control + sparse-reward tasks

AVEC: does it really work?

> Estimation error (learning the empirical target V™)
> Approximation error (learning the true target V™)
» Empirical variance

m Conclusion and perspectives

Revisiting the Critics in Deep Policy Gradients



Reinforcement Learning

Environment (Markov Decision Process):
m State s € S, action a € A

m Reward function: r(s, a), transition probabilities: P(s’|s, a)

Agent:
m Stochastic policy mp(als) with parameter ¢

An agent in state s; interacts with an environment by sampling action
a; ~ 7g(+|st), receives reward r; and transitions to a new state s;;1.
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Reinforcement Learning

Environment (Markov Decision Process):
m State s € S, action a € A

m Reward function: r(s, a), transition probabilities: P(s’|s, a)

Agent:
m Stochastic policy mp(als) with parameter ¢

An agent in state s; interacts with an environment by sampling action
a; ~ 7g(+|st), receives reward r; and transitions to a new state s;;1.

Goal: Find 7 that maximizes

J(ﬂ'e) = ]ETNTre [thr (St’at)]

t=0

with v € [0,1), sty1 ~ P(:|st, at), ar ~ mp(+|s¢) and trajectory 7.
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Policy Gradients

Policy gradient algorithms try to solve the optimization problem

mng(ﬂe Eron, [Zv r(se, a ]

by taking stochastic gradient ascent on the policy parameters 6, using the
policy gradient

Vo) =Erom,

t=0

Z Vo log mg(at|s:) Q™ (st, at)l

with Q™ (s,a) = Eror, [DrooV'r (S, ae) |so = s, a0 = a.

Intuition: make the good actions more probable.
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Policy Gradients

It is possible to obtain an unbiased estimate of the policy gradient from
empirical trajectories ...

... But the corresponding variance can be extremely high.
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Policy Gradients

It is possible to obtain an unbiased estimate of the policy gradient from
empirical trajectories ...

... But the corresponding variance can be extremely high.

Subtracting a baseline from the value function in the policy gradi-
ent can be very beneficial in reducing variance without damaging the
bias [Williams, 1992, Weaver and Tao, 2001].
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Policy Gradients

It is possible to obtain an unbiased estimate of the policy gradient from

empirical trajectories ...

... But the corresponding variance can be extremely high.

Subtracting a baseline from the value function in the policy gradi-
ent can be very beneficial in reducing variance without damaging the
bias [Williams, 1992, Weaver and Tao, 2001].

In practice, if we denote X the empirical estimate of X, the policy gradient
becomes
o0
Vod =Errn, ZV@ log o (at|s:)A™ (st, ar) |
t=0
with A™ (s, a) = Q™ (s, a) — V™(s) the advantage estimate which
quantifies how an action a is better than the average action in state s.
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Critics in Deep Policy Gradients
V™ is learned using a function estimator.
Let f, : S — R (¢ its parameter) be an estimator of the empirical return

Ve, fs is traditionally learned through minimizing the MSE against Ve At
update k, the critic minimizes:

Lac = E, [(@,(s) - Vﬂek(s)ﬂ ,

where the states s are collected under policy m, .

Setting applicable to e.g. PPO [Schulman et al., 2017] and TRPO [Schulman et al., 2015].
Alternatively use f; : S X A — R instead to fit Q™ to use in SAC [Haarnoja et al., 2018].
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The sad truth about policy gradient variance

In practice, these modifications on the AC framework result in improved
performance without a significant variance reduction [llyas et al., 2019].
Same conclusion with state-action-dependent baselines [Tucker et al., 2018].
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The sad truth about policy gradient variance

In practice, these modifications on the AC framework result in improved
performance without a significant variance reduction [llyas et al., 2019].
Same conclusion with state-action-dependent baselines [Tucker et al., 2018].

Problem: discrepancy between what motivates AC algorithms and the
resulting implementation to obtain maximum gains.
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Figure: Empirical variance of the gradient [llyas et al., 2019].
NB: the avg. pairwise cos sim is inversely proportional to the gradient variance (the higher the better).
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The sad truth about learning the value function

The value network (critic) succeeds in the supervised learning task of fitting
V™ but does not fit V™.

— The problem is the approximation error and not the estimator.
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Figure: Quality of value prediction [llyas et al., 2019]
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The sad truth about learning the value function

m Variance is not reduced.

m Approximation error: the value network succeeds in fitting V™ but does
not fit V™.

m Unbiased equivalents of “novel baseline-based algorithms” do not
improve performance nor reduce variance (see [Tucker et al., 2018]).
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A new approach to learning value functions

In AVEC, at update k the critic minimizes:
Lac (¢) :M
. . 2
Lvee () = Es [((@(s) — V™) - B [19) - 07 (9)] ) ]
where the states s are collected under policy 7, .
— AVEC minimizes the residual variance.

Using g4(s) = f(s) + Es[V™%(s) — f,(s)] provides consistent gradient
directions:

Vod (m9) = Erron,

Z Vg log 7T9(3t5t)&¢>(5t)] :

t=0

Proof. See [Flet-Berliac et al., 2020].
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Intuition

The most straightforward intuition comes in the Q-function estimation case:
simply replace V7(s) by Q™ (s,a) and f(s) by f4(s,a) in Laygc.

Idea: the practical use of the Q-function is to disentangle the relative values
of actions for each state [Sutton et al., 2000]. Lyygc focuses on the relative
state-action values.

+ MSE
=== Initial
=== Var

Figure: Comparison of simple models derived when Lyyzc is used instead of the MSE.

— In minimizing the residual variance,
AVEC allows a better recovery of the “shape” of the target near extrema.
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Intuition 2

Recall the approximation error ||V™ — V7| is
problematic [Tucker et al., 2018, llyas et al., 2019].
— Suggests that the variance of the empirical targets V™ is high.

Idea: optimizing the critic with Lyygc can be interpreted as fitting
V'(s) = V7(s) — Es[V7(s")] using the MSE.

In the independent case, \Z’" is a better approximations of V'"(s) =
V7™ (s) —Eg[V7(s')] than V7 is of V7 (see [Flet-Berliac et al., 2020]).

— V'™ has a more compact span, and is consequently easier to fit.
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Implementation

Algorithm 1 AVEC coupled with PPO.

: Input parameters: \; > 0,\y >0
. Initialize policy parameter 6 and value function parameter ¢
: for each update step do
batch B « ()
for each environment step do

ar ~ mo(-[st)

Ser1 ~ P (st, ar)

B+ BU{(st, at, e, se+1)}
end for
for each gradient step do

0 < 6 — AV JPPO(my)

12: ACtH— [\:(p\f Y 9’\)/2]

© X NDO RN

=
= O

13: ¢ < ¢—=AvVyLavec ()  cavec (@) =5 [((@(s) — V0% (s)) — Bs 1) — V7O (3)] )1
14:  end for
15: end for
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Before we go further...

Do you have questions?
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Continuous Control
On average, using AVEC improves SAC by 26% and PPO by 40%.
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Figure: AVEC coupled with SAC and PPO on MuJoCo tasks. X-axis: number of
timesteps. Y-axis: average total reward.
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Sparse Reward tasks

Acrobot MountainCar
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Figure: Comparative evaluation of AVEC in sparse reward tasks. X-axis: number of
timesteps. Y-axis: average total reward.

= AvECTRFO

3 11 LT

Figure: Left: State visitation frequency. Right: Phase portrait of visited states of
AVEC-TRPO (green) and TRPO (red) in MountainCar.

— AVEC is able to pick up on experienced positive reward more easily.
— Suggests that the reconstructed shape of the value function is more accurate around such rewarding
states: pushes the agent to explore further around experienced states with high values.
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Does it really work? Let's examine the new value function

1. What is the estimation error? (learning the empirical target V™)
2. What is the approximation error? (learning the true target V7)
3. What is the resulting empirical variance?
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Does it really work? Let's examine the new value function

1. What is the estimation error? (learning the empirical target)

— Expected
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Figure: Ly distance to v

result since vanilla PPO optimizes the MSE directly.
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Does it really work? Let's examine the new value function

2. What is the approximation error? (learning the true target)

NB: to approximate the true value function, we fit the returns sampled from the current policy using a
large number of transitions (3 - 10°).
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Figure: Ly distance to V™. X-axis: we run the algorithm and Vt € {1,2,4,6,9}-10°
we stop training, use the current policy to collect 3 - 10° transitions to estimate V™.

— Our estimator is far closer to the true value function half of the time
(horizon is 10°) than the estimator obtained with MSE, then as close to it.

Revisiting the Critics in Deep Policy Gradients 19



Does it really work? Let's examine the new value function

3. What is the resulting empirical variance?
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Figure: Average pairwise cosine similarity.

Higher average (10 batches per iteration) pairwise cosine sim. = Closer
batch-estimates of the gradient = Smaller gradient variance.
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Conclusion and perspectives

This paper ...:

o introduces a modification in the training objective for the critic in
actor-critic algorithms which (a) is well-motivated by recent analysis of deep
PG algorithms (b) produces considerable gains in performance

o highlights the benefits of a more thorough analysis of the critic objective in
policy gradient methods

o is not a claim that the residual variance is the optimal loss for the
state-value or the state-action-value functions, there might be better
estimators hiding in the nature!

o could be followed-up by further analysis of the bias-variance trade-off
(ablation study indicates that AVEC works best with & =0 in
L. = Var + aBias?)

o could be extended to stochastic environments
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Thank youl

Questions?
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More results: approximation error
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Figure: Lo distance to V™. X-axis: we run
we stop training, use the current policy to
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the algorithm and Vt € {1,2,4,6,9} - 10°
collect 3-10° transitions to estimate V™.
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More results: empirical variance
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Figure: Average cosine similarity between gradient measurements. AVEC empirically
reduces the variance compared to PPO or PPO-nobaseline. Trajectory size used in
estimation of the gradient variance: 3000 (upper row), 6000 (middle row), 9000
(lower row).
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More results: ablation study
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Figure: Sensitivity of AVEC-PPO with respect to (a,b): the bias; (c,d): the variance.
X-axis: number of timesteps. Y-axis: average total reward.
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